These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 20424887)
1. Electron shuttle-stimulated RDX mineralization and biological production of 4-nitro-2,4-diazabutanal (NDAB) in RDX-contaminated aquifer material. Kwon MJ; Finneran KT Biodegradation; 2010 Nov; 21(6):923-37. PubMed ID: 20424887 [TBL] [Abstract][Full Text] [Related]
2. Geochemical and microbiological processes contributing to the transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in contaminated aquifer material. Kwon MJ; O'Loughlin EJ; Antonopoulos DA; Finneran KT Chemosphere; 2011 Aug; 84(9):1223-30. PubMed ID: 21664641 [TBL] [Abstract][Full Text] [Related]
3. Biotransformation products and mineralization potential for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in abiotic versus biological degradation pathways with anthraquinone-2,6-disulfonate (AQDS) and Geobacter metallireducens. Kwon MJ; Finneran KT Biodegradation; 2008 Sep; 19(5):705-15. PubMed ID: 18239998 [TBL] [Abstract][Full Text] [Related]
4. Microbially mediated biodegradation of hexahydro-1,3,5-trinitro-1,3,5- triazine by extracellular electron shuttling compounds. Kwon MJ; Finneran KT Appl Environ Microbiol; 2006 Sep; 72(9):5933-41. PubMed ID: 16957213 [TBL] [Abstract][Full Text] [Related]
5. Microbial community composition during anaerobic mineralization of tert-butyl alcohol (TBA) in fuel-contaminated aquifer material. Wei N; Finneran KT Environ Sci Technol; 2011 Apr; 45(7):3012-8. PubMed ID: 21384909 [TBL] [Abstract][Full Text] [Related]
6. Effect of iron(III), humic acids and anthraquinone-2,6-disulfonate on biodegradation of cyclic nitramines by Clostridium sp. EDB2. Bhushan B; Halasz A; Hawari J J Appl Microbiol; 2006 Mar; 100(3):555-63. PubMed ID: 16478495 [TBL] [Abstract][Full Text] [Related]
7. Metabolism of the aliphatic nitramine 4-nitro-2,4-diazabutanal by Methylobacterium sp. strain JS178. Fournier D; Trott S; Hawari J; Spain J Appl Environ Microbiol; 2005 Aug; 71(8):4199-202. PubMed ID: 16085803 [TBL] [Abstract][Full Text] [Related]
8. Phylogeny of cyclic nitramine-degrading psychrophilic bacteria in marine sediment and their potential role in the natural attenuation of explosives. Zhao JS; Spain J; Thiboutot S; Ampleman G; Greer C; Hawari J FEMS Microbiol Ecol; 2004 Sep; 49(3):349-57. PubMed ID: 19712285 [TBL] [Abstract][Full Text] [Related]
9. Biodegradation of the nitramine explosives hexahydro-1,3,5-trinitro-1,3,5-triazine and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in cold marine sediment under anaerobic and oligotrophic conditions. Zhao JS; Greer CW; Thiboutot S; Ampleman G; Hawari J Can J Microbiol; 2004 Feb; 50(2):91-6. PubMed ID: 15052310 [TBL] [Abstract][Full Text] [Related]
10. Biodegradation of the hexahydro-1,3,5-trinitro-1,3,5-triazine ring cleavage product 4-nitro-2,4-diazabutanal by Phanerochaete chrysosporium. Fournier D; Halasz A; Spain J; Spanggord RJ; Bottaro JC; Hawari J Appl Environ Microbiol; 2004 Feb; 70(2):1123-8. PubMed ID: 14766596 [TBL] [Abstract][Full Text] [Related]
11. Sustained and complete hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation in zero-valent iron simulated barriers under different microbial conditions. Shrout JD; Larese-Casanova P; Scherer MM; Alvarez PJ Environ Technol; 2005 Oct; 26(10):1115-26. PubMed ID: 16342534 [TBL] [Abstract][Full Text] [Related]
12. Isolation and characterization of RDX-degrading Rhodococcus species from a contaminated aquifer. Bernstein A; Adar E; Nejidat A; Ronen Z Biodegradation; 2011 Sep; 22(5):997-1005. PubMed ID: 21327803 [TBL] [Abstract][Full Text] [Related]
13. Analysis of the key intermediates of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) in groundwater: occurrence, stability and preservation. Paquet L; Monteil-Rivera F; Hatzinger PB; Fuller ME; Hawari J J Environ Monit; 2011 Aug; 13(8):2304-11. PubMed ID: 21734991 [TBL] [Abstract][Full Text] [Related]
14. Biodegradation of RDX nitroso products MNX and TNX by cytochrome P450 XplA. Halasz A; Manno D; Perreault NN; Sabbadin F; Bruce NC; Hawari J Environ Sci Technol; 2012 Jul; 46(13):7245-51. PubMed ID: 22694209 [TBL] [Abstract][Full Text] [Related]
15. Metabolism of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in a contaminated vadose zone. Ronen Z; Yanovich Y; Goldin R; Adar E Chemosphere; 2008 Nov; 73(9):1492-8. PubMed ID: 18774159 [TBL] [Abstract][Full Text] [Related]
16. Cosubstrate independent mineralization of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a Desulfovibrio species under anaerobic conditions. Arnett CM; Adrian NR Biodegradation; 2009 Feb; 20(1):15-26. PubMed ID: 18459059 [TBL] [Abstract][Full Text] [Related]
17. RDX degradation using an integrated Fe(0)-microbial treatment approach. Wildman MJ; Alvarez PJ Water Sci Technol; 2001; 43(2):25-33. PubMed ID: 11380187 [TBL] [Abstract][Full Text] [Related]
18. Influence of carbon sources and electron shuttles on ferric iron reduction by Cellulomonas sp. strain ES6. Gerlach R; Field EK; Viamajala S; Peyton BM; Apel WA; Cunningham AB Biodegradation; 2011 Sep; 22(5):983-95. PubMed ID: 21318474 [TBL] [Abstract][Full Text] [Related]
19. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: a microcosm study. Chen YD; Barker JF; Gui L J Contam Hydrol; 2008 Feb; 96(1-4):17-31. PubMed ID: 17964687 [TBL] [Abstract][Full Text] [Related]
20. Anaerobic redox cycling of iron by freshwater sediment microorganisms. Weber KA; Urrutia MM; Churchill PF; Kukkadapu RK; Roden EE Environ Microbiol; 2006 Jan; 8(1):100-13. PubMed ID: 16343326 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]