BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 20425149)

  • 1. Smooth-muscle-like cells derived from human embryonic stem cells support and augment cord-like structures in vitro.
    Vo E; Hanjaya-Putra D; Zha Y; Kusuma S; Gerecht S
    Stem Cell Rev Rep; 2010 Jun; 6(2):237-47. PubMed ID: 20425149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Embryological Origin of Human Smooth Muscle Cells Influences Their Ability to Support Endothelial Network Formation.
    Bargehr J; Low L; Cheung C; Bernard WG; Iyer D; Bennett MR; Gambardella L; Sinha S
    Stem Cells Transl Med; 2016 Jul; 5(7):946-59. PubMed ID: 27194743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of human brain organoids with a functional vascular-like system.
    Cakir B; Xiang Y; Tanaka Y; Kural MH; Parent M; Kang YJ; Chapeton K; Patterson B; Yuan Y; He CS; Raredon MSB; Dengelegi J; Kim KY; Sun P; Zhong M; Lee S; Patra P; Hyder F; Niklason LE; Lee SH; Yoon YS; Park IH
    Nat Methods; 2019 Nov; 16(11):1169-1175. PubMed ID: 31591580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-organization of vascularized skeletal muscle from bovine embryonic stem cells.
    Sanaki-Matsumiya M; Villava C; Rappez L; Haase K; Wu J; Ebisuya M
    bioRxiv; 2024 Mar; ():. PubMed ID: 38585777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Podoplanin is Responsible for the Distinct Blood and Lymphatic Capillaries.
    Jeong DP; Hall E; Neu E; Hanjaya-Putra D
    Cell Mol Bioeng; 2022 Oct; 15(5):467-478. PubMed ID: 36444348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering bioactive nanoparticles to rejuvenate vascular progenitor cells.
    Bui L; Edwards S; Hall E; Alderfer L; Round K; Owen M; Sainaghi P; Zhang S; Nallathamby PD; Haneline LS; Hanjaya-Putra D
    Commun Biol; 2022 Jun; 5(1):635. PubMed ID: 35768543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methods for Differentiating hiPSCs into Vascular Smooth Muscle Cells.
    Li ML; Luo J; Ellis MW; Riaz M; Ajaj Y; Qyang Y
    Methods Mol Biol; 2022; 2375():21-34. PubMed ID: 34591296
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Chan XY; Volkova E; Eoh J; Black R; Fang L; Gorashi R; Song J; Wang J; Elliott MB; Barreto-Ortiz SF; Chen J; Lin BL; Santhanam L; Cheng L; Lee FS; Prchal JT; Gerecht S
    iScience; 2021 Apr; 24(4):102246. PubMed ID: 33796838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heart regeneration with human pluripotent stem cells: Prospects and challenges.
    Jiang Y; Lian XL
    Bioact Mater; 2020 Mar; 5(1):74-81. PubMed ID: 31989061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tethering transforming growth factor β1 to soft hydrogels guides vascular smooth muscle commitment from human mesenchymal stem cells.
    Ding Y; Johnson R; Sharma S; Ding X; Bryant SJ; Tan W
    Acta Biomater; 2020 Mar; 105():68-77. PubMed ID: 31982589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lymphatic Tissue Engineering and Regeneration.
    Alderfer L; Wei A; Hanjaya-Putra D
    J Biol Eng; 2018; 12():32. PubMed ID: 30564284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered Microenvironment for Manufacturing Human Pluripotent Stem Cell-Derived Vascular Smooth Muscle Cells.
    Lin H; Qiu X; Du Q; Li Q; Wang O; Akert L; Wang Z; Anderson D; Liu K; Gu L; Zhang C; Lei Y
    Stem Cell Reports; 2019 Jan; 12(1):84-97. PubMed ID: 30527760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transforming growth factor-β in liver cancer stem cells and regeneration.
    Rao S; Zaidi S; Banerjee J; Jogunoori W; Sebastian R; Mishra B; Nguyen BN; Wu RC; White J; Deng C; Amdur R; Li S; Mishra L
    Hepatol Commun; 2017 Aug; 1(6):477-493. PubMed ID: 29404474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vascular smooth muscle cells derived from inbred swine induced pluripotent stem cells for vascular tissue engineering.
    Luo J; Qin L; Kural MH; Schwan J; Li X; Bartulos O; Cong XQ; Ren Y; Gui L; Li G; Ellis MW; Li P; Kotton DN; Dardik A; Pober JS; Tellides G; Rolle M; Campbell S; Hawley RJ; Sachs DH; Niklason LE; Qyang Y
    Biomaterials; 2017 Dec; 147():116-132. PubMed ID: 28942128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TGF-β1-induced differentiation of SHED into functional smooth muscle cells.
    Xu JG; Zhu SY; Heng BC; Dissanayaka WL; Zhang CF
    Stem Cell Res Ther; 2017 Jan; 8(1):10. PubMed ID: 28114966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fibronectin Deposition Participates in Extracellular Matrix Assembly and Vascular Morphogenesis.
    Hielscher A; Ellis K; Qiu C; Porterfield J; Gerecht S
    PLoS One; 2016; 11(1):e0147600. PubMed ID: 26811931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical strain induces elastin and collagen production in human pluripotent stem cell-derived vascular smooth muscle cells.
    Wanjare M; Agarwal N; Gerecht S
    Am J Physiol Cell Physiol; 2015 Aug; 309(4):C271-81. PubMed ID: 26108668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defining differences among perivascular cells derived from human pluripotent stem cells.
    Wanjare M; Kusuma S; Gerecht S
    Stem Cell Reports; 2014 May; 2(5):561-75. PubMed ID: 24936446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fibroblasts derived from human pluripotent stem cells activate angiogenic responses in vitro and in vivo.
    Shamis Y; Silva EA; Hewitt KJ; Brudno Y; Levenberg S; Mooney DJ; Garlick JA
    PLoS One; 2013; 8(12):e83755. PubMed ID: 24386271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-organized vascular networks from human pluripotent stem cells in a synthetic matrix.
    Kusuma S; Shen YI; Hanjaya-Putra D; Mali P; Cheng L; Gerecht S
    Proc Natl Acad Sci U S A; 2013 Jul; 110(31):12601-6. PubMed ID: 23858432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.