BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 20425967)

  • 1. Robotic force stabilization for beating heart intracardiac surgery.
    Yuen SG; Yip MC; Vasilyev NV; Perrin DP; del Nido PJ; Howe RD
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):26-33. PubMed ID: 20425967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robotic Force Stabilization for Beating Heart Intracardiac Surgery.
    Yuen SG; Yip MC; Vasilyev NV; Perrin DP; Del Nido PJ; Howe RD
    Med Image Comput Comput Assist Interv; 2009 Oct; 5761(2009):26-33. PubMed ID: 20431713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Force Tracking with Feed-Forward Motion Estimation for Beating Heart Surgery.
    Yuen SG; Perrin DP; Vasilyev NV; Del Nido PJ; Howe RD
    IEEE Trans Robot; 2010 Aug; 26(5):888-896. PubMed ID: 29375279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robotic tissue tracking for beating heart mitral valve surgery.
    Yuen SG; Vasilyev NV; del Nido PJ; Howe RD
    Med Image Anal; 2013 Dec; 17(8):1236-42. PubMed ID: 23973122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D ultrasound-guided motion compensation system for beating heart mitral valve repair.
    Yuen SG; Kesner SB; Vasilyev NV; Del Nido PJ; Howe RD
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):711-9. PubMed ID: 18979809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contact force measurement of instruments for force-feedback on a surgical robot: acceleration force cancellations based on acceleration sensor readings.
    Shimachi S; Kameyama F; Hakozaki Y; Fujiwara Y
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):97-104. PubMed ID: 16685948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of a thin-film capacitive force sensor array for tactile feedback in robotic surgery.
    Paydar OH; Wottawa CR; Fan RE; Dutson EP; Grundfest WS; Culjat MO; Candler RN
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2355-8. PubMed ID: 23366397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How to do it: importance of left atrial side retraction in robotic and minimally invasive mitral valve surgery.
    Ishikawa N; Sun YS; Nifong LW; Watanabe G; Chitwood WR
    Heart Surg Forum; 2008; 11(5):E270-1. PubMed ID: 18948238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro-force sensing in robot assisted membrane peeling for vitreoretinal surgery.
    Balicki M; Uneri A; Iordachita I; Handa J; Gehlbach P; Taylor R
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):303-10. PubMed ID: 20879413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel highly articulated robotic surgical system for epicardial ablation.
    Ota T; Degani A; Schwartzman D; Zubiate B; McGarvey J; Choset H; Zenati MA
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():250-3. PubMed ID: 19162640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards localizing on the surface of the beating heart.
    Wood NA; Liu TY; Waugh K; Zenati MA; Riviere CN
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1413-6. PubMed ID: 23366165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A robotic catheter system with real-time force feedback and monitor.
    Xiao N; Guo J; Guo S; Tamiya T
    Australas Phys Eng Sci Med; 2012 Sep; 35(3):283-9. PubMed ID: 22763489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilization of image motion for robotic assisted beating heart surgery.
    Stoyanov D; Yang GZ
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):417-24. PubMed ID: 18051086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force adaptive multi-spectral imaging with an articulated robotic endoscope.
    Noonan DP; Payne CJ; Shang J; Sauvage V; Newton R; Elson D; Darzi A; Yang GZ
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):245-52. PubMed ID: 20879406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robotic cardiovascular surgery.
    Kypson AP; Chitwood WR
    Expert Rev Med Devices; 2006 May; 3(3):335-43. PubMed ID: 16681455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechatronic design of haptic forceps for robotic surgery.
    Rizun P; Gunn D; Cox B; Sutherland G
    Int J Med Robot; 2006 Dec; 2(4):341-9. PubMed ID: 17520653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A robust uniaxial force sensor for minimally invasive surgery.
    Yip MC; Yuen SG; Howe RD
    IEEE Trans Biomed Eng; 2010 May; 57(5):1008-11. PubMed ID: 20172798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Evaluation of force data with a force/torque sensor during FESS. A step towards robot-assisted surgery].
    Eichhorn KW; Tingelhoff K; Wagner I; Westphal R; Rilk M; Kunkel ME; Wahl FM; Bootz F
    HNO; 2008 Aug; 56(8):789-94. PubMed ID: 18210013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GPU based real-time instrument tracking with three-dimensional ultrasound.
    Novotny PM; Stoll JA; Vasilyev NV; del Nido PJ; Dupont PE; Zickler TE; Howe RD
    Med Image Anal; 2007 Oct; 11(5):458-64. PubMed ID: 17681483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A triple-jaw actuated and sensorized instrument for grasping large organs during minimally invasive robotic surgery.
    Mirbagheri A; Farahmand F
    Int J Med Robot; 2013 Mar; 9(1):83-93. PubMed ID: 22576714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.