These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 20425995)
1. Fast automatic segmentation of the esophagus from 3D CT data using a probabilistic model. Feulner J; Zhou SK; Cavallaro A; Seifert S; Hornegger J; Comaniciu D Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):255-62. PubMed ID: 20425995 [TBL] [Abstract][Full Text] [Related]
2. A probabilistic model for automatic segmentation of the esophagus in 3-D CT scans. Feulner J; Zhou SK; Hammon M; Seifert S; Huber M; Comaniciu D; Hornegger J; Cavallaro A IEEE Trans Med Imaging; 2011 Jun; 30(6):1252-64. PubMed ID: 21303741 [TBL] [Abstract][Full Text] [Related]
3. Model-based esophagus segmentation from CT scans using a spatial probability map. Feulner J; Zhou SK; Huber M; Cavallaro A; Hornegger J; Comaniciu D Med Image Comput Comput Assist Interv; 2010; 13(Pt 1):95-102. PubMed ID: 20879219 [TBL] [Abstract][Full Text] [Related]
4. Three-dimensional lung tumor segmentation from x-ray computed tomography using sparse field active models. Awad J; Owrangi A; Villemaire L; O'Riordan E; Parraga G; Fenster A Med Phys; 2012 Feb; 39(2):851-65. PubMed ID: 22320795 [TBL] [Abstract][Full Text] [Related]
5. Decomposing the Hounsfield unit: probabilistic segmentation of brain tissue in computed tomography. Kemmling A; Wersching H; Berger K; Knecht S; Groden C; Nölte I Clin Neuroradiol; 2012 Mar; 22(1):79-91. PubMed ID: 22270832 [TBL] [Abstract][Full Text] [Related]
6. Multi-organ segmentation based on spatially-divided probabilistic atlas from 3D abdominal CT images. Chu C; Oda M; Kitasaka T; Misawa K; Fujiwara M; Hayashi Y; Nimura Y; Rueckert D; Mori K Med Image Comput Comput Assist Interv; 2013; 16(Pt 2):165-72. PubMed ID: 24579137 [TBL] [Abstract][Full Text] [Related]
7. Automated model-based rib cage segmentation and labeling in CT images. Klinder T; Lorenz C; von Berg J; Dries SP; Bülow T; Ostermann J Med Image Comput Comput Assist Interv; 2007; 10(Pt 2):195-202. PubMed ID: 18044569 [TBL] [Abstract][Full Text] [Related]
8. Automated segmentation of the liver from 3D CT images using probabilistic atlas and multi-level statistical shape model. Okada T; Shimada R; Sato Y; Hori M; Yokota K; Nakamoto M; Chen YW; Nakamura H; Tamura S Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):86-93. PubMed ID: 18051047 [TBL] [Abstract][Full Text] [Related]
9. Liver segmentation using automatically defined patient specific B-spline surface models. Song Y; Bulpitt AJ; Brodlie KW Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):43-50. PubMed ID: 20426094 [TBL] [Abstract][Full Text] [Related]
10. Geometrical model-based segmentation of the organs of sight on CT images. Bekes G; Máté E; Nyúl LG; Kuba A; Fidrich M Med Phys; 2008 Feb; 35(2):735-43. PubMed ID: 18383695 [TBL] [Abstract][Full Text] [Related]
11. Segmentation of neck lymph nodes in CT datasets with stable 3D mass-spring models. Dornheim J; Seim H; Preim B; Hertel I; Strauss G Med Image Comput Comput Assist Interv; 2006; 9(Pt 2):904-11. PubMed ID: 17354859 [TBL] [Abstract][Full Text] [Related]
12. Joint optimization of segmentation and shape prior from level-set-based statistical shape model, and its application to the automated segmentation of abdominal organs. Saito A; Nawano S; Shimizu A Med Image Anal; 2016 Feb; 28():46-65. PubMed ID: 26716720 [TBL] [Abstract][Full Text] [Related]
13. A 4D statistical shape model for automated segmentation of lungs with large tumors. Wilms M; Ehrhardt J; Handels H Med Image Comput Comput Assist Interv; 2012; 15(Pt 2):347-54. PubMed ID: 23286067 [TBL] [Abstract][Full Text] [Related]
14. Semi-automatic liver tumor segmentation with hidden Markov measure field model and non-parametric distribution estimation. Häme Y; Pollari M Med Image Anal; 2012 Jan; 16(1):140-9. PubMed ID: 21742543 [TBL] [Abstract][Full Text] [Related]
15. Segmentation of liver and spleen based on computational anatomy models. Dong C; Chen YW; Foruzan AH; Lin L; Han XH; Tateyama T; Wu X; Xu G; Jiang H Comput Biol Med; 2015 Dec; 67():146-60. PubMed ID: 26551453 [TBL] [Abstract][Full Text] [Related]
16. 3D segmentation of coronary arteries based on advanced mathematical morphology techniques. Bouraoui B; Ronse C; Baruthio J; Passat N; Germain P Comput Med Imaging Graph; 2010 Jul; 34(5):377-87. PubMed ID: 20153604 [TBL] [Abstract][Full Text] [Related]
17. Automatic detection and segmentation of kidneys in 3D CT images using random forests. Cuingnet R; Prevost R; Lesage D; Cohen LD; Mory B; Ardon R Med Image Comput Comput Assist Interv; 2012; 15(Pt 3):66-74. PubMed ID: 23286115 [TBL] [Abstract][Full Text] [Related]
18. Hierarchical segmentation and identification of thoracic vertebra using learning-based edge detection and coarse-to-fine deformable model. Ma J; Lu L; Zhan Y; Zhou X; Salganicoff M; Krishnan A Med Image Comput Comput Assist Interv; 2010; 13(Pt 1):19-27. PubMed ID: 20879210 [TBL] [Abstract][Full Text] [Related]
19. Anatomical structures segmentation by spherical 3D ray casting and gradient domain editing. Kronman A; Joskowicz L; Sosna J Med Image Comput Comput Assist Interv; 2012; 15(Pt 2):363-70. PubMed ID: 23286069 [TBL] [Abstract][Full Text] [Related]
20. Automated segmentation of the liver from 3D CT images using probabilistic atlas and multilevel statistical shape model. Okada T; Shimada R; Hori M; Nakamoto M; Chen YW; Nakamura H; Sato Y Acad Radiol; 2008 Nov; 15(11):1390-403. PubMed ID: 18995190 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]