These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 20426017)

  • 1. Task versus subtask surgical skill evaluation of robotic minimally invasive surgery.
    Reiley CE; Hager GD
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):435-42. PubMed ID: 20426017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data-derived models for segmentation with application to surgical assessment and training.
    Varadarajan B; Reiley C; Lin H; Khudanpur S; Hager G
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):426-34. PubMed ID: 20426016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated surgical skill assessment in RMIS training.
    Zia A; Essa I
    Int J Comput Assist Radiol Surg; 2018 May; 13(5):731-739. PubMed ID: 29549553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. String motif-based description of tool motion for detecting skill and gestures in robotic surgery.
    Ahmidi N; Gao Y; Béjar B; Vedula SS; Khudanpur S; Vidal R; Hager GD
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 1):26-33. PubMed ID: 24505645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surgical task and skill classification from eye tracking and tool motion in minimally invasive surgery.
    Ahmidi N; Hager GD; Ishii L; Fichtinger G; Gallia GL; Ishii M
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):295-302. PubMed ID: 20879412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards automatic skill evaluation: detection and segmentation of robot-assisted surgical motions.
    Lin HC; Shafran I; Yuh D; Hager GD
    Comput Aided Surg; 2006 Sep; 11(5):220-30. PubMed ID: 17127647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An automatic skill evaluation framework for robotic surgery training.
    Peng W; Xing Y; Liu R; Li J; Zhang Z
    Int J Med Robot; 2019 Feb; 15(1):e1964. PubMed ID: 30281892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surgical gesture segmentation and recognition.
    Tao L; Zappella L; Hager GD; Vidal R
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 3):339-46. PubMed ID: 24505779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic detection and segmentation of robot-assisted surgical motions.
    Lin HC; Shafran I; Murphy TE; Okamura AM; Yuh DD; Hager GD
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 1):802-10. PubMed ID: 16685920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Objective measures for longitudinal assessment of robotic surgery training.
    Kumar R; Jog A; Vagvolgyi B; Nguyen H; Hager G; Chen CC; Yuh D
    J Thorac Cardiovasc Surg; 2012 Mar; 143(3):528-34. PubMed ID: 22172215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Dataset and Benchmarks for Segmentation and Recognition of Gestures in Robotic Surgery.
    Ahmidi N; Tao L; Sefati S; Gao Y; Lea C; Haro BB; Zappella L; Khudanpur S; Vidal R; Hager GD
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):2025-2041. PubMed ID: 28060703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ASAP-CORPS: A Semi-Autonomous Platform for COntact-Rich Precision Surgery.
    Balakuntala MV; Gonzalez GT; Wachs JP; Voyles RM
    Mil Med; 2023 Nov; 188(Suppl 6):412-419. PubMed ID: 37948233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surgical gesture classification from video and kinematic data.
    Zappella L; Béjar B; Hager G; Vidal R
    Med Image Anal; 2013 Oct; 17(7):732-45. PubMed ID: 23706754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Objective evaluation of expert and novice performance during robotic surgical training tasks.
    Judkins TN; Oleynikov D; Stergiou N
    Surg Endosc; 2009 Mar; 23(3):590-7. PubMed ID: 18443870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HMM assessment of quality of movement trajectory in laparoscopic surgery.
    Leong JJ; Nicolaou M; Atallah L; Mylonas GP; Darzi AW; Yang GZ
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):752-9. PubMed ID: 17354958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling and evaluation of surgical performance using hidden Markov models.
    Megali G; Sinigaglia S; Tonet O; Dario P
    IEEE Trans Biomed Eng; 2006 Oct; 53(10):1911-9. PubMed ID: 17019854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motion generation of robotic surgical tasks: learning from expert demonstrations.
    Reiley CE; Plaku E; Hager GD
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():967-70. PubMed ID: 21096982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endoscopic Image-Based Skill Assessment in Robot-Assisted Minimally Invasive Surgery.
    Lajkó G; Nagyné Elek R; Haidegger T
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The minimally acceptable classification criterion for surgical skill: intent vectors and separability of raw motion data.
    Dockter RL; Lendvay TS; Sweet RM; Kowalewski TM
    Int J Comput Assist Radiol Surg; 2017 Jul; 12(7):1151-1159. PubMed ID: 28516302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Gesture Recognition Algorithm for Hand-Assisted Laparoscopic Surgery.
    López-Casado C; Bauzano E; Rivas-Blanco I; Pérez-Del-Pulgar CJ; Muñoz VF
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31779237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.