BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 20426017)

  • 1. Task versus subtask surgical skill evaluation of robotic minimally invasive surgery.
    Reiley CE; Hager GD
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):435-42. PubMed ID: 20426017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data-derived models for segmentation with application to surgical assessment and training.
    Varadarajan B; Reiley C; Lin H; Khudanpur S; Hager G
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):426-34. PubMed ID: 20426016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated surgical skill assessment in RMIS training.
    Zia A; Essa I
    Int J Comput Assist Radiol Surg; 2018 May; 13(5):731-739. PubMed ID: 29549553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. String motif-based description of tool motion for detecting skill and gestures in robotic surgery.
    Ahmidi N; Gao Y; Béjar B; Vedula SS; Khudanpur S; Vidal R; Hager GD
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 1):26-33. PubMed ID: 24505645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surgical task and skill classification from eye tracking and tool motion in minimally invasive surgery.
    Ahmidi N; Hager GD; Ishii L; Fichtinger G; Gallia GL; Ishii M
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):295-302. PubMed ID: 20879412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards automatic skill evaluation: detection and segmentation of robot-assisted surgical motions.
    Lin HC; Shafran I; Yuh D; Hager GD
    Comput Aided Surg; 2006 Sep; 11(5):220-30. PubMed ID: 17127647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An automatic skill evaluation framework for robotic surgery training.
    Peng W; Xing Y; Liu R; Li J; Zhang Z
    Int J Med Robot; 2019 Feb; 15(1):e1964. PubMed ID: 30281892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surgical gesture segmentation and recognition.
    Tao L; Zappella L; Hager GD; Vidal R
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 3):339-46. PubMed ID: 24505779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic detection and segmentation of robot-assisted surgical motions.
    Lin HC; Shafran I; Murphy TE; Okamura AM; Yuh DD; Hager GD
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 1):802-10. PubMed ID: 16685920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Objective measures for longitudinal assessment of robotic surgery training.
    Kumar R; Jog A; Vagvolgyi B; Nguyen H; Hager G; Chen CC; Yuh D
    J Thorac Cardiovasc Surg; 2012 Mar; 143(3):528-34. PubMed ID: 22172215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Dataset and Benchmarks for Segmentation and Recognition of Gestures in Robotic Surgery.
    Ahmidi N; Tao L; Sefati S; Gao Y; Lea C; Haro BB; Zappella L; Khudanpur S; Vidal R; Hager GD
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):2025-2041. PubMed ID: 28060703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ASAP-CORPS: A Semi-Autonomous Platform for COntact-Rich Precision Surgery.
    Balakuntala MV; Gonzalez GT; Wachs JP; Voyles RM
    Mil Med; 2023 Nov; 188(Suppl 6):412-419. PubMed ID: 37948233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surgical gesture classification from video and kinematic data.
    Zappella L; Béjar B; Hager G; Vidal R
    Med Image Anal; 2013 Oct; 17(7):732-45. PubMed ID: 23706754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Objective evaluation of expert and novice performance during robotic surgical training tasks.
    Judkins TN; Oleynikov D; Stergiou N
    Surg Endosc; 2009 Mar; 23(3):590-7. PubMed ID: 18443870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HMM assessment of quality of movement trajectory in laparoscopic surgery.
    Leong JJ; Nicolaou M; Atallah L; Mylonas GP; Darzi AW; Yang GZ
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):752-9. PubMed ID: 17354958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling and evaluation of surgical performance using hidden Markov models.
    Megali G; Sinigaglia S; Tonet O; Dario P
    IEEE Trans Biomed Eng; 2006 Oct; 53(10):1911-9. PubMed ID: 17019854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motion generation of robotic surgical tasks: learning from expert demonstrations.
    Reiley CE; Plaku E; Hager GD
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():967-70. PubMed ID: 21096982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endoscopic Image-Based Skill Assessment in Robot-Assisted Minimally Invasive Surgery.
    Lajkó G; Nagyné Elek R; Haidegger T
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The minimally acceptable classification criterion for surgical skill: intent vectors and separability of raw motion data.
    Dockter RL; Lendvay TS; Sweet RM; Kowalewski TM
    Int J Comput Assist Radiol Surg; 2017 Jul; 12(7):1151-1159. PubMed ID: 28516302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Gesture Recognition Algorithm for Hand-Assisted Laparoscopic Surgery.
    López-Casado C; Bauzano E; Rivas-Blanco I; Pérez-Del-Pulgar CJ; Muñoz VF
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31779237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.