These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 20426017)

  • 21. Robotic path planning for surgeon skill evaluation in minimally-invasive sinus surgery.
    Ahmidi N; Hager GD; Ishii L; Gallia GL; Ishii M
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 1):471-8. PubMed ID: 23285585
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep learning with convolutional neural network for objective skill evaluation in robot-assisted surgery.
    Wang Z; Majewicz Fey A
    Int J Comput Assist Radiol Surg; 2018 Dec; 13(12):1959-1970. PubMed ID: 30255463
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stereoscopic scene flow for robotic assisted minimally invasive surgery.
    Stoyanov D
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 1):479-86. PubMed ID: 23285586
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Affordable, web-based surgical skill training and evaluation tool.
    Islam G; Kahol K; Li B; Smith M; Patel VL
    J Biomed Inform; 2016 Feb; 59():102-14. PubMed ID: 26556643
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surgical gesture classification from video data.
    Haro BB; Zappella L; Vidal R
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 1):34-41. PubMed ID: 23285532
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selective automation and skill transfer in medical robotics: a demonstration on surgical knot-tying.
    Knoll A; Mayer H; Staub C; Bauernschmitt R
    Int J Med Robot; 2012 Dec; 8(4):384-97. PubMed ID: 22605676
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Developing a comprehensive, proficiency-based training program for robotic surgery.
    Dulan G; Rege RV; Hogg DC; Gilberg-Fisher KM; Arain NA; Tesfay ST; Scott DJ
    Surgery; 2012 Sep; 152(3):477-88. PubMed ID: 22938907
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robotic surgical simulation.
    Liss MA; McDougall EM
    Cancer J; 2013; 19(2):124-9. PubMed ID: 23528719
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A probabilistic framework for tracking deformable soft tissue in minimally invasive surgery.
    Mountney P; Lo B; Thiemjarus S; Stoyanov D; Zhong-Yang G
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 2):34-41. PubMed ID: 18044550
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New technologies supporting surgical interventions and training of surgical skills.
    Dankelman J; Grimbergen CA; Stassen HG
    IEEE Eng Med Biol Mag; 2007; 26(3):47-52. PubMed ID: 17549920
    [No Abstract]   [Full Text] [Related]  

  • 31. Cognitive training for technical and non-technical skills in robotic surgery: a randomised controlled trial.
    Raison N; Ahmed K; Abe T; Brunckhorst O; Novara G; Buffi N; McIlhenny C; van der Poel H; van Hemelrijck M; Gavazzi A; Dasgupta P
    BJU Int; 2018 Dec; 122(6):1075-1081. PubMed ID: 29733492
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Markov model assessment of subjects' clinical skill using the E-Pelvis physical simulator.
    Mackel TR; Rosen J; Pugh CM
    IEEE Trans Biomed Eng; 2007 Dec; 54(12):2133-41. PubMed ID: 18075029
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Practice Makes Perfect: Correlations Between Prior Experience in High-level Athletics and Robotic Surgical Performance Do Not Persist After Task Repetition.
    Shee K; Ghali FM; Hyams ES
    J Surg Educ; 2017; 74(4):630-637. PubMed ID: 28087244
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A master manipulator with a remote-center-of-motion kinematic structure for a minimally invasive robotic surgical system.
    Lee H; Cheon B; Hwang M; Kang D; Kwon DS
    Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 29027359
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Task-Level vs. Segment-Level Quantitative Metrics for Surgical Skill Assessment.
    Vedula SS; Malpani A; Ahmidi N; Khudanpur S; Hager G; Chen CC
    J Surg Educ; 2016; 73(3):482-9. PubMed ID: 26896147
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of 2D and 3D vision on performance of novice subjects using da Vinci robotic system.
    Blavier A; Gaudissart Q; Cadière GB; Nyssen AS
    Acta Chir Belg; 2006; 106(6):662-4. PubMed ID: 17290690
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mental workload and stress perceived by novice operators in the laparoscopic and robotic minimally invasive surgical interfaces.
    Klein MI; Warm JS; Riley MA; Matthews G; Doarn C; Donovan JF; Gaitonde K
    J Endourol; 2012 Aug; 26(8):1089-94. PubMed ID: 22429084
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Training in minimally invasive lobectomy: thoracoscopic versus robotic approaches.
    Ferguson MK; Umanskiy K; Warnes C; Celauro AD; Vigneswaran WT; Prachand VN
    Ann Thorac Surg; 2014 Jun; 97(6):1885-92. PubMed ID: 24681034
    [TBL] [Abstract][Full Text] [Related]  

  • 39. From the Dexterous Surgical Skill to the Battlefield-A Robotics Exploratory Study.
    Gonzalez GT; Kaur U; Rahman M; Venkatesh V; Sanchez N; Hager G; Xue Y; Voyles R; Wachs J
    Mil Med; 2021 Jan; 186(Suppl 1):288-294. PubMed ID: 33499518
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Review of methods for objective surgical skill evaluation.
    Reiley CE; Lin HC; Yuh DD; Hager GD
    Surg Endosc; 2011 Feb; 25(2):356-66. PubMed ID: 20607563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.