These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 20426085)

  • 1. Adjusting the neuroimaging statistical inferences for nonstationarity.
    Salimi-Khorshidi G; Smith SM; Nichols TE
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):992-9. PubMed ID: 20426085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adjusting the effect of nonstationarity in cluster-based and TFCE inference.
    Salimi-Khorshidi G; Smith SM; Nichols TE
    Neuroimage; 2011 Feb; 54(3):2006-19. PubMed ID: 20955803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonstationary cluster-size inference with random field and permutation methods.
    Hayasaka S; Phan KL; Liberzon I; Worsley KJ; Nichols TE
    Neuroimage; 2004 Jun; 22(2):676-87. PubMed ID: 15193596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of a non-stationary voxelation-corrected cluster-size test with TFCE for group-Level MRI inference.
    Li H; Nickerson LD; Nichols TE; Gao JH
    Hum Brain Mapp; 2017 Mar; 38(3):1269-1280. PubMed ID: 27785843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A voxelation-corrected non-stationary 3D cluster-size test based on random field theory.
    Li H; Nickerson LD; Zhao X; Nichols TE; Gao JH
    Neuroimage; 2015 Sep; 118():676-82. PubMed ID: 26067343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the reproducibility of group analysis with randomized brain parcellations.
    Da Mota B; Fritsch V; Varoquaux G; Frouin V; Poline JB; Thirion B
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 2):591-8. PubMed ID: 24579189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probabilistic TFCE: A generalized combination of cluster size and voxel intensity to increase statistical power.
    Spisák T; Spisák Z; Zunhammer M; Bingel U; Smith S; Nichols T; Kincses T
    Neuroimage; 2019 Jan; 185():12-26. PubMed ID: 30296561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative evaluation of statistical inference in resting state functional MRI.
    Yang X; Kang H; Newton A; Landman BA
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 2):246-53. PubMed ID: 23286055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cluster mass inference via random field theory.
    Zhang H; Nichols TE; Johnson TD
    Neuroimage; 2009 Jan; 44(1):51-61. PubMed ID: 18805493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cluster-level statistical inference in fMRI datasets: The unexpected behavior of random fields in high dimensions.
    Bansal R; Peterson BS
    Magn Reson Imaging; 2018 Jun; 49():101-115. PubMed ID: 29408478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling and inference of multisubject fMRI data.
    Mumford JA; Nichols T
    IEEE Eng Med Biol Mag; 2006; 25(2):42-51. PubMed ID: 16568936
    [No Abstract]   [Full Text] [Related]  

  • 12. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference.
    Smith SM; Nichols TE
    Neuroimage; 2009 Jan; 44(1):83-98. PubMed ID: 18501637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Faster permutation inference in brain imaging.
    Winkler AM; Ridgway GR; Douaud G; Nichols TE; Smith SM
    Neuroimage; 2016 Nov; 141():502-516. PubMed ID: 27288322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Likelihood-based hypothesis tests for brain activation detection from MRI data disturbed by colored noise: a simulation study.
    den Dekker AJ; Poot DH; Bos R; Sijbers J
    IEEE Trans Med Imaging; 2009 Feb; 28(2):287-96. PubMed ID: 19188115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A cluster overlap measure for comparison of activations in fMRI studies.
    Cecchi GA; Garg R; Rao AR
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):1018-25. PubMed ID: 20426088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of temporal stationarity and spatial consistency of fMRI noise using independent component analysis.
    Turner GH; Twieg DB
    IEEE Trans Med Imaging; 2005 Jun; 24(6):712-8. PubMed ID: 15957595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bootstrapped Permutation Test for Multiresponse Inference on Brain Behavior Associations.
    Ng B; Poline JB; Thirion B; Greicius M;
    Inf Process Med Imaging; 2015; 24():113-24. PubMed ID: 26221670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting activations in PET and fMRI: levels of inference and power.
    Friston KJ; Holmes A; Poline JB; Price CJ; Frith CD
    Neuroimage; 1996 Dec; 4(3 Pt 1):223-35. PubMed ID: 9345513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced signal detection in neuroimaging by means of regional control of the global false discovery rate.
    Langers DR; Jansen JF; Backes WH
    Neuroimage; 2007 Oct; 38(1):43-56. PubMed ID: 17825583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporating spatial dependence into Bayesian multiple testing of statistical parametric maps in functional neuroimaging.
    Brown DA; Lazar NA; Datta GS; Jang W; McDowell JE
    Neuroimage; 2014 Jan; 84():97-112. PubMed ID: 23981437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.