BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 20426168)

  • 1. Mapping tissue optical attenuation to identify cancer using optical coherence tomography.
    McLaughlin RA; Scolaro L; Robbins P; Saunders C; Jacques SL; Sampson DD
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):657-64. PubMed ID: 20426168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parametric imaging of cancer with optical coherence tomography.
    McLaughlin RA; Scolaro L; Robbins P; Saunders C; Jacques SL; Sampson DD
    J Biomed Opt; 2010; 15(4):046029. PubMed ID: 20799831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational methods for analysis of human breast tumor tissue in optical coherence tomography images.
    Zysk AM; Boppart SA
    J Biomed Opt; 2006; 11(5):054015. PubMed ID: 17092164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Delineation of an oral cancer lesion with swept-source optical coherence tomography.
    Tsai MT; Lee HC; Lu CW; Wang YM; Lee CK; Yang CC; Chiang CP
    J Biomed Opt; 2008; 13(4):044012. PubMed ID: 19021340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wavelet analysis enables system-independent texture analysis of optical coherence tomography images.
    Lingley-Papadopoulos CA; Loew MH; Zara JM
    J Biomed Opt; 2009; 14(4):044010. PubMed ID: 19725722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined image-processing algorithms for improved optical coherence tomography of prostate nerves.
    Chitchian S; Weldon TP; Fiddy MA; Fried NM
    J Biomed Opt; 2010; 15(4):046014. PubMed ID: 20799816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration biopsy guidance.
    Goldberg BD; Iftimia NV; Bressner JE; Pitman MB; Halpern E; Bouma BE; Tearney GJ
    J Biomed Opt; 2008; 13(1):014014. PubMed ID: 18315372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis.
    Lingley-Papadopoulos CA; Loew MH; Manyak MJ; Zara JM
    J Biomed Opt; 2008; 13(2):024003. PubMed ID: 18465966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contrast definition for optical coherent polarimetric images.
    Goudail F; Réfrégier P
    IEEE Trans Pattern Anal Mach Intell; 2004 Jul; 26(7):947-51. PubMed ID: 18579953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography.
    van der Meer FJ; Faber DJ; Baraznji Sassoon DM; Aalders MC; Pasterkamp G; van Leeuwen TG
    IEEE Trans Med Imaging; 2005 Oct; 24(10):1369-76. PubMed ID: 16229422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder.
    Cauberg EC; de Bruin DM; Faber DJ; de Reijke TM; Visser M; de la Rosette JJ; van Leeuwen TG
    J Biomed Opt; 2010; 15(6):066013. PubMed ID: 21198187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging of human lymph nodes using optical coherence tomography: potential for staging cancer.
    McLaughlin RA; Scolaro L; Robbins P; Hamza S; Saunders C; Sampson DD
    Cancer Res; 2010 Apr; 70(7):2579-84. PubMed ID: 20233873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Computerized System to Assess Axillary Lymph Node Malignancy from Sonographic Images.
    Chmielewski A; Dufort P; Scaranelo AM
    Ultrasound Med Biol; 2015 Oct; 41(10):2690-9. PubMed ID: 26206257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of optical coherence micro-elastography as a method to visualize micro-architecture in human axillary lymph nodes.
    Kennedy KM; Chin L; Wijesinghe P; McLaughlin RA; Latham B; Sampson DD; Saunders CM; Kennedy BF
    BMC Cancer; 2016 Nov; 16(1):874. PubMed ID: 27829404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic Vessel Shade-Robust Segmentation of Retinal Layers in OCT Images.
    González-López A; Ortega M; Penedo MG; Charlón P
    Stud Health Technol Inform; 2014; 207():47-54. PubMed ID: 25488210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffuse optical tomography with spectral constraints and wavelength optimization.
    Corlu A; Choe R; Durduran T; Lee K; Schweiger M; Arridge SR; Hillman EM; Yodh AG
    Appl Opt; 2005 Apr; 44(11):2082-93. PubMed ID: 15835357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Image quality improvement in optical coherence tomography using Lucy-Richardson deconvolution algorithm.
    Hojjatoleslami SA; Avanaki MR; Podoleanu AG
    Appl Opt; 2013 Aug; 52(23):5663-70. PubMed ID: 23938416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aligning scan acquisition circles in optical coherence tomography images of the retinal nerve fibre layer.
    Zhu H; Crabb DP; Schlottmann PG; Wollstein G; Garway-Heath DF
    IEEE Trans Med Imaging; 2011 Jun; 30(6):1228-38. PubMed ID: 21296706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A two-layer structure prediction framework for microscopy cell detection.
    Xu Y; Wu W; Chang EI; Chen D; Mu J; Lee PP; Blenman KR; Tu Z
    Comput Med Imaging Graph; 2015 Apr; 41():29-36. PubMed ID: 25082065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-free optical lymphangiography: development of an automatic segmentation method applied to optical coherence tomography to visualize lymphatic vessels using Hessian filters.
    Yousefi S; Qin J; Zhi Z; Wang RK
    J Biomed Opt; 2013 Aug; 18(8):86004. PubMed ID: 23922124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.