BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 20426174)

  • 1. Automated anatomical labeling of bronchial branches extracted from CT datasets based on machine learning and combination optimization and its application to bronchoscope guidance.
    Mori K; Ota S; Deguchi D; Kitasaka T; Suenaga Y; Iwano S; Hasegawa Y; Takabatake H; Mori M; Natori H
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):707-14. PubMed ID: 20426174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated nomenclature of bronchial branches extracted from CT images and its application to biopsy path planning in virtual bronchoscopy.
    Mori K; Ema S; Kitasaka T; Mekada Y; Ide I; Murase H; Suenaga Y; Takabatake H; Mori M; Natori H
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):854-61. PubMed ID: 16686040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated anatomical labeling of the bronchial branch and its application to the virtual bronchoscopy system.
    Mori K; Hasegawa J; Suenaga Y; Toriwaki J
    IEEE Trans Med Imaging; 2000 Feb; 19(2):103-14. PubMed ID: 10784282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Matching and anatomical labeling of human airway tree.
    Tschirren J; McLennan G; Palágyi K; Hoffman EA; Sonka M
    IEEE Trans Med Imaging; 2005 Dec; 24(12):1540-7. PubMed ID: 16353371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional path planning for virtual bronchoscopy.
    Kiraly AP; Helferty JP; Hoffman EA; McLennan G; Higgins WE
    IEEE Trans Med Imaging; 2004 Nov; 23(11):1365-79. PubMed ID: 15554125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Path planning for virtual bronchoscopy.
    Negahdar M; Ahmadian A; Navab N; Firouznia K
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():156-9. PubMed ID: 17946384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulmonary airways: 3-D reconstruction from multislice CT and clinical investigation.
    Fetita CI; Prêteux F; Beigelman-Aubry C; Grenier P
    IEEE Trans Med Imaging; 2004 Nov; 23(11):1353-64. PubMed ID: 15554124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust segmentation and anatomical labeling of the airway tree from thoracic CT scans.
    van Ginneken B; Baggerman W; van Rikxoort EM
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):219-26. PubMed ID: 18979751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hybrid method for airway segmentation and automated measurement of bronchial wall thickness on CT.
    Xu Z; Bagci U; Foster B; Mansoor A; Udupa JK; Mollura DJ
    Med Image Anal; 2015 Aug; 24(1):1-17. PubMed ID: 26026778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A three-stage method for the 3D reconstruction of the tracheobronchial tree from CT scans.
    Rosell J; Cabras P
    Comput Med Imaging Graph; 2013; 37(7-8):430-7. PubMed ID: 23981684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrathoracic airway trees: segmentation and airway morphology analysis from low-dose CT scans.
    Tschirren J; Hoffman EA; McLennan G; Sonka M
    IEEE Trans Med Imaging; 2005 Dec; 24(12):1529-39. PubMed ID: 16353370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bronchoscope tracking based on image registration using multiple initial starting points estimated by motion prediction.
    Mori K; Deguchi D; Kitasaka T; Suenaga Y; Takabatake H; Mori M; Natori H; Maurer CR
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 2):645-52. PubMed ID: 17354827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hierarchical scheme for geodesic anatomical labeling of airway trees.
    Feragen A; Petersen J; Owen M; Lo P; Thomsen LH; Wille MM; Dirksen A; de Bruijne M
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 3):147-55. PubMed ID: 23286125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated estimation of the upper surface of the diaphragm in 3-D CT images.
    Zhou X; Ninomiya H; Hara T; Fujita H; Yokoyama R; Chen H; Kiryu T; Hoshi H
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):351-3. PubMed ID: 18232381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D/2D image registration: the impact of X-ray views and their number.
    Tomazevic D; Likar B; Pernus F
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):450-7. PubMed ID: 18051090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated model-based rib cage segmentation and labeling in CT images.
    Klinder T; Lorenz C; von Berg J; Dries SP; Bülow T; Ostermann J
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 2):195-202. PubMed ID: 18044569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new classifier fusion method based on historical and on-line classification reliability for recognizing common CT imaging signs of lung diseases.
    Ma L; Liu X; Song L; Zhou C; Zhao X; Zhao Y
    Comput Med Imaging Graph; 2015 Mar; 40():39-48. PubMed ID: 25453465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated CT scoring of airway diseases: preliminary results.
    Odry BL; Kiraly AP; Godoy MC; Ko J; Naidich DP; Novak CL; Lerallut JF
    Acad Radiol; 2010 Sep; 17(9):1136-45. PubMed ID: 20576450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Medical image analysis of 3D CT images based on extension of Haralick texture features.
    Tesar L; Shimizu A; Smutek D; Kobatake H; Nawano S
    Comput Med Imaging Graph; 2008 Sep; 32(6):513-20. PubMed ID: 18614335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer-aided analysis of airway trees in micro-CT scans of ex vivo porcine lung tissue.
    Bauer C; Adam R; Stoltz DA; Beichel RR
    Comput Med Imaging Graph; 2012 Dec; 36(8):601-9. PubMed ID: 22959430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.