These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 20426186)
1. Automated segmentation of the femur and pelvis from 3D CT data of diseased hip using hierarchical statistical shape model of joint structure. Yokota F; Okada T; Takao M; Sugano N; Tada Y; Sato Y Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):811-8. PubMed ID: 20426186 [TBL] [Abstract][Full Text] [Related]
2. Automated CT segmentation of diseased hip using hierarchical and conditional statistical shape models. Yokota F; Okada T; Takao M; Sugano N; Tada Y; Tomiyama N; Sato Y Med Image Comput Comput Assist Interv; 2013; 16(Pt 2):190-7. PubMed ID: 24579140 [TBL] [Abstract][Full Text] [Related]
3. An articulated statistical shape model for accurate hip joint segmentation. Kainmueller D; Lamecker H; Zachow S; Hege HC Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6345-51. PubMed ID: 19964159 [TBL] [Abstract][Full Text] [Related]
4. Automated segmentation of the liver from 3D CT images using probabilistic atlas and multi-level statistical shape model. Okada T; Shimada R; Sato Y; Hori M; Yokota K; Nakamoto M; Chen YW; Nakamura H; Tamura S Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):86-93. PubMed ID: 18051047 [TBL] [Abstract][Full Text] [Related]
5. Automatic X-ray landmark detection and shape segmentation via data-driven joint estimation of image displacements. Chen C; Xie W; Franke J; Grutzner PA; Nolte LP; Zheng G Med Image Anal; 2014 Apr; 18(3):487-99. PubMed ID: 24561486 [TBL] [Abstract][Full Text] [Related]
6. Construction of hierarchical multi-organ statistical atlases and their application to multi-organ segmentation from CT images. Okada T; Yokota K; Hori M; Nakamoto M; Nakamura H; Sato Y Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):502-9. PubMed ID: 18979784 [TBL] [Abstract][Full Text] [Related]
7. MASCG: Multi-Atlas Segmentation Constrained Graph method for accurate segmentation of hip CT images. Chu C; Bai J; Wu X; Zheng G Med Image Anal; 2015 Dec; 26(1):173-84. PubMed ID: 26426453 [TBL] [Abstract][Full Text] [Related]
8. Joint optimization of segmentation and shape prior from level-set-based statistical shape model, and its application to the automated segmentation of abdominal organs. Saito A; Nawano S; Shimizu A Med Image Anal; 2016 Feb; 28():46-65. PubMed ID: 26716720 [TBL] [Abstract][Full Text] [Related]
9. Automated segmentation of acetabulum and femoral head from 3-D CT images. Zoroofi RA; Sato Y; Sasama T; Nishii T; Sugano N; Yonenobu K; Yoshikawa H; Ochi T; Tamura S IEEE Trans Inf Technol Biomed; 2003 Dec; 7(4):329-43. PubMed ID: 15000359 [TBL] [Abstract][Full Text] [Related]
10. Automated segmentation of the liver from 3D CT images using probabilistic atlas and multilevel statistical shape model. Okada T; Shimada R; Hori M; Nakamoto M; Chen YW; Nakamura H; Sato Y Acad Radiol; 2008 Nov; 15(11):1390-403. PubMed ID: 18995190 [TBL] [Abstract][Full Text] [Related]
11. Deformable 2D-3D registration of the pelvis with a limited field of view, using shape statistics. Sadowsky O; Chintalapani G; Taylor RH Med Image Comput Comput Assist Interv; 2007; 10(Pt 2):519-26. PubMed ID: 18044608 [TBL] [Abstract][Full Text] [Related]
12. Semi-automatic segmentation of femur based on harmonic barrier. Zou Z; Liao SH; Luo SD; Liu Q; Liu SJ Comput Methods Programs Biomed; 2017 May; 143():171-184. PubMed ID: 28391815 [TBL] [Abstract][Full Text] [Related]
13. Improve accuracy for automatic acetabulum segmentation in CT images. Liu H; Zhao J; Dai N; Qian H; Tang Y Biomed Mater Eng; 2014; 24(6):3159-77. PubMed ID: 25227025 [TBL] [Abstract][Full Text] [Related]
14. Fully automatic X-ray image segmentation via joint estimation of image displacements. Chen C; Xie W; Franke J; Grützner PA; Nolte LP; Zheng G Med Image Comput Comput Assist Interv; 2013; 16(Pt 3):227-34. PubMed ID: 24505765 [TBL] [Abstract][Full Text] [Related]
15. Segmentation of multiple knee bones from CT for orthopedic knee surgery planning. Wu D; Sofka M; Birkbeck N; Zhou SK Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):372-80. PubMed ID: 25333140 [TBL] [Abstract][Full Text] [Related]
16. Conditional variability of statistical shape models based on surrogate variables. Blanc R; Reyes M; Seiler C; Székely G Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):84-91. PubMed ID: 20426099 [TBL] [Abstract][Full Text] [Related]
17. A study on graphical model structure for representing statistical shape model of point distribution model. Sawada Y; Hontani H Med Image Comput Comput Assist Interv; 2012; 15(Pt 2):470-7. PubMed ID: 23286082 [TBL] [Abstract][Full Text] [Related]
18. Fully automatic segmentation of the femur from 3D-CT images using primitive shape recognition and statistical shape models. Ben Younes L; Nakajima Y; Saito T Int J Comput Assist Radiol Surg; 2014 Mar; 9(2):189-96. PubMed ID: 24101434 [TBL] [Abstract][Full Text] [Related]
19. Automated model-based rib cage segmentation and labeling in CT images. Klinder T; Lorenz C; von Berg J; Dries SP; Bülow T; Ostermann J Med Image Comput Comput Assist Interv; 2007; 10(Pt 2):195-202. PubMed ID: 18044569 [TBL] [Abstract][Full Text] [Related]
20. Automatic construction of statistical shape models using deformable simplex meshes with vector field convolution energy. Wang J; Shi C Biomed Eng Online; 2017 Apr; 16(1):49. PubMed ID: 28438178 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]