These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 20426324)

  • 1. A mixed-model moving-average approach to geostatistical modeling in stream networks.
    Peterson EE; Ver Hoef JM
    Ecology; 2010 Mar; 91(3):644-51. PubMed ID: 20426324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patterns of spatial autocorrelation in stream water chemistry.
    Peterson EE; Merton AA; Theobald DM; Urquhart NS
    Environ Monit Assess; 2006 Oct; 121(1-3):571-96. PubMed ID: 16897525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting water quality impaired stream segments using landscape-scale data and a regional geostatistical model: a case study in Maryland.
    Peterson EE; Urquhart NS
    Environ Monit Assess; 2006 Oct; 121(1-3):615-38. PubMed ID: 16967209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Network analysis reveals multiscale controls on streamwater chemistry.
    McGuire KJ; Torgersen CE; Likens GE; Buso DC; Lowe WH; Bailey SW
    Proc Natl Acad Sci U S A; 2014 May; 111(19):7030-5. PubMed ID: 24753575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and Evaluation of Geostatistical Methods for Non-Euclidean-Based Spatial Covariance Matrices.
    Davis BJK; Curriero FC
    Math Geosci; 2019 Aug; 51(6):767-791. PubMed ID: 31827631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geostatistical Prediction of Microbial Water Quality Throughout a Stream Network Using Meteorology, Land Cover, and Spatiotemporal Autocorrelation.
    Holcomb DA; Messier KP; Serre ML; Rowny JG; Stewart JR
    Environ Sci Technol; 2018 Jul; 52(14):7775-7784. PubMed ID: 29886747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A spatially explicit framework for quantifying downstream hydrologic conditions.
    Strager MP; Petty JT; Strager JM; Barker-Fulton J
    J Environ Manage; 2009 Apr; 90(5):1854-61. PubMed ID: 19155121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hydrologic network supporting spatially referenced regression modeling in the Chesapeake Bay Watershed.
    Brakebill JW; Preston SD
    Environ Monit Assess; 2003; 81(1-3):73-84. PubMed ID: 12620006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SSNdesign-An R package for pseudo-Bayesian optimal and adaptive sampling designs on stream networks.
    Pearse AR; McGree JM; Som NA; Leigh C; Maxwell P; Ver Hoef JM; Peterson EE
    PLoS One; 2020; 15(9):e0238422. PubMed ID: 32960894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A linked spatial and temporal model of the chemical and biological status of a large, acid-sensitive river network.
    Evans CD; Cooper DM; Juggins S; Jenkins A; Norris D
    Sci Total Environ; 2006 Jul; 365(1-3):167-85. PubMed ID: 16580046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local landscape predictors of maximum stream temperature and thermal sensitivity in the Columbia River Basin, USA.
    Chang H; Psaris M
    Sci Total Environ; 2013 Sep; 461-462():587-600. PubMed ID: 23756218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential stream density in Mid-Atlantic US watersheds.
    Elmore AJ; Julian JP; Guinn SM; Fitzpatrick MC
    PLoS One; 2013; 8(8):e74819. PubMed ID: 24023704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of dam effects on streams and fish assemblages of the conterminous USA.
    Cooper AR; Infante DM; Daniel WM; Wehrly KE; Wang L; Brenden TO
    Sci Total Environ; 2017 May; 586():879-889. PubMed ID: 28233615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Projected climate-induced habitat loss for salmonids in the John Day River network, Oregon, U.S.A.
    Ruesch AS; Torgersen CE; Lawler JJ; Olden JD; Peterson EE; Volk CJ; Lawrence DJ
    Conserv Biol; 2012 Oct; 26(5):873-82. PubMed ID: 22827880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling dendritic ecological networks in space: an integrated network perspective.
    Peterson EE; Ver Hoef JM; Isaak DJ; Falke JA; Fortin MJ; Jordan CE; McNyset K; Monestiez P; Ruesch AS; Sengupta A; Som N; Steel EA; Theobald DM; Torgersen CE; Wenger SJ
    Ecol Lett; 2013 May; 16(5):707-19. PubMed ID: 23458322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine-scale population structure and riverscape genetics of brook trout (Salvelinus fontinalis) distributed continuously along headwater channel networks.
    Kanno Y; Vokoun JC; Letcher BH
    Mol Ecol; 2011 Sep; 20(18):3711-29. PubMed ID: 21819470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How Misapplication of the Hydrologic Unit Framework Diminishes the Meaning of Watersheds.
    Omernik JM; Griffith GE; Hughes RM; Glover JB; Weber MH
    Environ Manage; 2017 Jul; 60(1):1-11. PubMed ID: 28378091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental flow requirements in arid zone rivers--a case study from the Lake Eyre Basin, central Australia.
    Costelloe JF; Puckridge JT; Reid JR; Pritchard J; Hudson P; Bailey V; Good M
    Water Sci Technol; 2003; 48(7):65-72. PubMed ID: 14653635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seasonal invasion dynamics in a spatially heterogeneous river with fluctuating flows.
    Jin Y; Hilker FM; Steffler PM; Lewis MA
    Bull Math Biol; 2014 Jul; 76(7):1522-65. PubMed ID: 24889133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of nested spatial patterns and seasonal variation in the longitudinal distribution of Sicyopterus japonicus in the Datuan Stream, Taiwan by using geostatistical methods.
    Lin YP; Wang CL; Chang CR; Yu HH
    Environ Monit Assess; 2011 Jul; 178(1-4):1-18. PubMed ID: 20809387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.