These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 2042644)

  • 1. Renal protein synthesis in diabetes mellitus: effects of insulin and insulin-like growth factor I.
    Barac-Nieto M; Liu SM; Spitzer A
    Am J Kidney Dis; 1991 Jun; 17(6):658-60. PubMed ID: 2042644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tubular cell protein degradation in early diabetic renal hypertrophy.
    Shechter P; Boner G; Rabkin R
    J Am Soc Nephrol; 1994 Feb; 4(8):1582-7. PubMed ID: 8025232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein turnover in the hypertrophying kidney.
    Rabkin R; Shechter P; Shi JD; Boner G
    Miner Electrolyte Metab; 1996; 22(1-3):153-6. PubMed ID: 8676809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recombinant insulin-like growth factor I normalizes expression of renal glucose transporters in diabetic rats.
    Asada T; Ogawa T; Iwai M; Shimomura K; Kobayashi M
    Am J Physiol; 1997 Jul; 273(1 Pt 2):F27-37. PubMed ID: 9249589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preferential expression of insulin-like growth factor binding proteins-1, -3, and -5 during early diabetic renal hypertrophy in rats.
    Park IS; Kiyomoto H; Alvarez F; Xu YC; Abboud HE; Abboud SL
    Am J Kidney Dis; 1998 Dec; 32(6):1000-10. PubMed ID: 9856516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulatory effect of insulin on renal proximal tubule sodium transport is preserved in type 2 diabetes with nephropathy.
    Nakamura M; Satoh N; Suzuki M; Kume H; Homma Y; Seki G; Horita S
    Biochem Biophys Res Commun; 2015 May; 461(1):154-8. PubMed ID: 25866180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perturbation of rat renal tubule transport of the organic cation amantadine in recent onset streptozotocin-induced diabetes and in uninephrectomy.
    Goralski KB; Stupack DG; Hatch GM; Sitar DS
    Can J Physiol Pharmacol; 2001 Jan; 79(1):18-24. PubMed ID: 11201497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renal hypertrophy in streptozotocin diabetic rats: role of proteolytic lysosomal enzymes.
    Olbricht CJ; Geissinger B
    Kidney Int; 1992 Apr; 41(4):966-72. PubMed ID: 1513118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pre- and post-translational regulation of renal insulin-like growth factor binding protein-1 in insulin-deficient diabetes.
    Kaufman CR; Catanese VM
    J Investig Med; 1995 Apr; 43(2):178-86. PubMed ID: 7537614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renal protein degradation in streptozotocin diabetic mice.
    Liu S; Barac-Nieto M
    Diabetes Res Clin Pract; 1997 Jan; 34(3):143-8. PubMed ID: 9069565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pentoxifylline ameliorates renal tumor necrosis factor expression, sodium retention, and renal hypertrophy in diabetic rats.
    DiPetrillo K; Gesek FA
    Am J Nephrol; 2004; 24(3):352-9. PubMed ID: 15205554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ERK and p38 mediate high-glucose-induced hypertrophy and TGF-beta expression in renal tubular cells.
    Fujita H; Omori S; Ishikura K; Hida M; Awazu M
    Am J Physiol Renal Physiol; 2004 Jan; 286(1):F120-6. PubMed ID: 12952860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early diabetes mellitus stimulates proximal tubule renin mRNA expression in the rat.
    Zimpelmann J; Kumar D; Levine DZ; Wehbi G; Imig JD; Navar LG; Burns KD
    Kidney Int; 2000 Dec; 58(6):2320-30. PubMed ID: 11115066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of transforming growth factor-beta 1 during diabetic renal hypertrophy.
    Shankland SJ; Scholey JW; Ly H; Thai K
    Kidney Int; 1994 Aug; 46(2):430-42. PubMed ID: 7967355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A role for glycosphingolipid accumulation in the renal hypertrophy of streptozotocin-induced diabetes mellitus.
    Zador IZ; Deshmukh GD; Kunkel R; Johnson K; Radin NS; Shayman JA
    J Clin Invest; 1993 Mar; 91(3):797-803. PubMed ID: 8450061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential distribution of insulin-like growth factor-1 and insulin-like growth factor binding proteins in experimental diabetic rat kidney.
    Miyatake N; Shikata K; Wada J; Sugimoto H; Takahashi S; Makino H
    Nephron; 1999; 81(3):317-23. PubMed ID: 10050087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered expression and localization of insulin receptor in proximal tubule cells from human and rat diabetic kidney.
    Gatica R; Bertinat R; Silva P; Carpio D; Ramírez MJ; Slebe JC; San Martín R; Nualart F; Campistol JM; Caelles C; Yáñez AJ
    J Cell Biochem; 2013 Mar; 114(3):639-49. PubMed ID: 23059533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insulin deficiency induces rat renal mesangial cell dysfunction via activation of IGF-1/IGF-1R pathway.
    Kong YL; Shen Y; Ni J; Shao DC; Miao NJ; Xu JL; Zhou L; Xue H; Zhang W; Wang XX; Lu LM
    Acta Pharmacol Sin; 2016 Feb; 37(2):217-27. PubMed ID: 26775660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological changes in extracellular sodium directly control human proximal tubule growth and transport.
    Johnson DW; Saunders HJ; Poronnik P; Cook DI; Field MJ; Pollock CA
    Pflugers Arch; 1998 Jan; 435(2):211-8. PubMed ID: 9382933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Octreotide prevents the early increase in renal insulin-like growth factor binding protein 1 in streptozotocin diabetic rats.
    Raz I; Rubinger D; Popovtzer M; Grønbaek H; Weiss O; Flyvbjerg A
    Diabetes; 1998 Jun; 47(6):924-30. PubMed ID: 9604870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.