These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1512 related articles for article (PubMed ID: 20426451)

  • 21. Ligand-based virtual screening and in silico design of new antimalarial compounds using nonstochastic and stochastic total and atom-type quadratic maps.
    Marrero-Ponce Y; Iyarreta-Veitía M; Montero-Torres A; Romero-Zaldivar C; Brandt CA; Avila PE; Kirchgatter K; Machado Y
    J Chem Inf Model; 2005; 45(4):1082-100. PubMed ID: 16045304
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Scaffold hopping using clique detection applied to reduced graphs.
    Barker EJ; Buttar D; Cosgrove DA; Gardiner EJ; Kitts P; Willett P; Gillet VJ
    J Chem Inf Model; 2006; 46(2):503-11. PubMed ID: 16562978
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular fingerprint recombination: generating hybrid fingerprints for similarity searching from different fingerprint types.
    Nisius B; Bajorath J
    ChemMedChem; 2009 Nov; 4(11):1859-63. PubMed ID: 19714705
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of 2D fingerprint methods for multiple-template similarity searching on compound activity classes of increasing structural diversity.
    Tovar A; Eckert H; Bajorath J
    ChemMedChem; 2007 Feb; 2(2):208-17. PubMed ID: 17143917
    [TBL] [Abstract][Full Text] [Related]  

  • 25. "Bayes affinity fingerprints" improve retrieval rates in virtual screening and define orthogonal bioactivity space: when are multitarget drugs a feasible concept?
    Bender A; Jenkins JL; Glick M; Deng Z; Nettles JH; Davies JW
    J Chem Inf Model; 2006; 46(6):2445-56. PubMed ID: 17125186
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Informative library design as an efficient strategy to identify and optimize leads: application to cyclin-dependent kinase 2 antagonists.
    Bradley EK; Miller JL; Saiah E; Grootenhuis PD
    J Med Chem; 2003 Sep; 46(20):4360-4. PubMed ID: 13678414
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Random reduction in fingerprint bit density improves compound recall in search calculations using complex reference molecules.
    Wang Y; Geppert H; Bajorath J
    Chem Biol Drug Des; 2008 Jun; 71(6):511-7. PubMed ID: 18466274
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fuzzy tricentric pharmacophore fingerprints. 1. Topological fuzzy pharmacophore triplets and adapted molecular similarity scoring schemes.
    Bonachéra F; Parent B; Barbosa F; Froloff N; Horvath D
    J Chem Inf Model; 2006; 46(6):2457-77. PubMed ID: 17125187
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New 4-point pharmacophore method for molecular similarity and diversity applications: overview of the method and applications, including a novel approach to the design of combinatorial libraries containing privileged substructures.
    Mason JS; Morize I; Menard PR; Cheney DL; Hulme C; Labaudiniere RF
    J Med Chem; 1999 Aug; 42(17):3251-64. PubMed ID: 10464012
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An alternative view of protein fold space.
    Shindyalov IN; Bourne PE
    Proteins; 2000 Feb; 38(3):247-60. PubMed ID: 10713986
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Similarity searching of chemical databases using atom environment descriptors (MOLPRINT 2D): evaluation of performance.
    Bender A; Mussa HY; Glen RC; Reiling S
    J Chem Inf Comput Sci; 2004; 44(5):1708-18. PubMed ID: 15446830
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A structural hierarchy matching approach for molecular similarity/substructure searching.
    Ji SS; Dong HJ; Zhou XX; Liu YM; Zhang FX; Wang Q; Huang XA
    Molecules; 2015 May; 20(5):8791-9. PubMed ID: 25988610
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Finding multiactivity substructures by mining databases of drug-like compounds.
    Sheridan RP
    J Chem Inf Comput Sci; 2003; 43(3):1037-50. PubMed ID: 12767163
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of R-Group Fingerprints Based on the Local Landscape from an Attachment Point of a Molecular Structure.
    Tamura S; Miyao T; Funatsu K
    J Chem Inf Model; 2019 Jun; 59(6):2656-2663. PubMed ID: 31059251
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Substructure mining using elaborate chemical representation.
    Kazius J; Nijssen S; Kok J; Bäck T; Ijzerman AP
    J Chem Inf Model; 2006; 46(2):597-605. PubMed ID: 16562988
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ligand-target prediction using Winnow and naive Bayesian algorithms and the implications of overall performance statistics.
    Nigsch F; Bender A; Jenkins JL; Mitchell JB
    J Chem Inf Model; 2008 Dec; 48(12):2313-25. PubMed ID: 19055411
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mathematical correction for fingerprint similarity measures to improve chemical retrieval.
    Swamidass SJ; Baldi P
    J Chem Inf Model; 2007; 47(3):952-64. PubMed ID: 17444629
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Global Bayesian models for the prioritization of antitubercular agents.
    Prathipati P; Ma NL; Keller TH
    J Chem Inf Model; 2008 Dec; 48(12):2362-70. PubMed ID: 19053518
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel 2D fingerprints for ligand-based virtual screening.
    Ewing T; Baber JC; Feher M
    J Chem Inf Model; 2006; 46(6):2423-31. PubMed ID: 17125184
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effectiveness of 2D fingerprints for scaffold hopping.
    Gardiner EJ; Holliday JD; O'Dowd C; Willett P
    Future Med Chem; 2011 Mar; 3(4):405-14. PubMed ID: 21452977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 76.