BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 20426479)

  • 21. Temperature dependence of the structure of the substrate and active site of the Thermus thermophilus chorismate mutase E x S complex.
    Zhang X; Bruice TC
    Biochemistry; 2006 Jul; 45(28):8562-7. PubMed ID: 16834330
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of site-directed mutagenesis to identify residues specific for each reaction catalyzed by chorismate mutase-prephenate dehydrogenase from Escherichia coli.
    Christendat D; Saridakis VC; Turnbull JL
    Biochemistry; 1998 Nov; 37(45):15703-12. PubMed ID: 9843375
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of formation of reactive conformers (NACs) for the Claisen rearrangement of chorismate to prephenate in water and in the E. coli mutase: the efficiency of the enzyme catalysis.
    Hur S; Bruice TC
    J Am Chem Soc; 2003 May; 125(19):5964-72. PubMed ID: 12733937
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrostatic transition state stabilization rather than reactant destabilization provides the chemical basis for efficient chorismate mutase catalysis.
    Burschowsky D; van Eerde A; Ökvist M; Kienhöfer A; Kast P; Hilvert D; Krengel U
    Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17516-21. PubMed ID: 25422475
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational and mutational analysis of human glutaredoxin (thioltransferase): probing the molecular basis of the low pKa of cysteine 22 and its role in catalysis.
    Jao SC; English Ospina SM; Berdis AJ; Starke DW; Post CB; Mieyal JJ
    Biochemistry; 2006 Apr; 45(15):4785-96. PubMed ID: 16605247
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations.
    Valiev M; Kawai R; Adams JA; Weare JH
    J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Theoretical perspectives on the reaction mechanism of serine proteases: the reaction free energy profiles of the acylation process.
    Ishida T; Kato S
    J Am Chem Soc; 2003 Oct; 125(39):12035-48. PubMed ID: 14505425
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Just a near attack conformer for catalysis (chorismate to prephenate rearrangements in water, antibody, enzymes, and their mutants).
    Hur S; Bruice TC
    J Am Chem Soc; 2003 Sep; 125(35):10540-2. PubMed ID: 12940735
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiple-steering QM-MM calculation of the free energy profile in chorismate mutase.
    Crespo A; Martí MA; Estrin DA; Roitberg AE
    J Am Chem Soc; 2005 May; 127(19):6940-1. PubMed ID: 15884923
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure and dynamics of a molten globular enzyme.
    Pervushin K; Vamvaca K; Vögeli B; Hilvert D
    Nat Struct Mol Biol; 2007 Dec; 14(12):1202-6. PubMed ID: 17994104
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations.
    Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A transition path sampling study of the reaction catalyzed by the enzyme chorismate mutase.
    Crehuet R; Field MJ
    J Phys Chem B; 2007 May; 111(20):5708-18. PubMed ID: 17474768
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation of the enzymatic mechanism of the yeast chorismate mutase by docking a transition state analog.
    Lin SL; Xu D; Li A; Rosen M; Wolfson HJ; Nussinov R
    J Mol Biol; 1997 Sep; 271(5):838-45. PubMed ID: 9299331
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The mechanism of catalysis of the chorismate to prephenate reaction by the Escherichia coli mutase enzyme.
    Hur S; Bruice TC
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1176-81. PubMed ID: 11818529
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 1.6 A crystal structure of the secreted chorismate mutase from Mycobacterium tuberculosis: novel fold topology revealed.
    Okvist M; Dey R; Sasso S; Grahn E; Kast P; Krengel U
    J Mol Biol; 2006 Apr; 357(5):1483-99. PubMed ID: 16499927
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Substrate conformational transitions in the active site of chorismate mutase: their role in the catalytic mechanism.
    Guo H; Cui Q; Lipscomb WN; Karplus M
    Proc Natl Acad Sci U S A; 2001 Jul; 98(16):9032-7. PubMed ID: 11481470
    [TBL] [Abstract][Full Text] [Related]  

  • 37. What is so special about Arg 55 in the catalysis of cyclophilin A? insights from hybrid QM/MM simulations.
    Li G; Cui Q
    J Am Chem Soc; 2003 Dec; 125(49):15028-38. PubMed ID: 14653737
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bacillus subtilis chorismate mutase is partially diffusion-controlled.
    Mattei P; Kast P; Hilvert D
    Eur J Biochem; 1999 Apr; 261(1):25-32. PubMed ID: 10103029
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preorganization and reorganization as related factors in enzyme catalysis: the chorismate mutase case.
    Martí S; Andrés J; Moliner V; Silla E; Tuñón I; Bertrán J
    Chemistry; 2003 Feb; 9(4):984-91. PubMed ID: 12584715
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiple high-level QM/MM reaction paths demonstrate transition-state stabilization in chorismate mutase: correlation of barrier height with transition-state stabilization.
    Claeyssens F; Ranaghan KE; Manby FR; Harvey JN; Mulholland AJ
    Chem Commun (Camb); 2005 Oct; (40):5068-70. PubMed ID: 16220173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.