These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 20426692)

  • 1. Searching protein three-dimensional structures in faster than linear time.
    Shibuya T
    J Comput Biol; 2010 Apr; 17(4):593-602. PubMed ID: 20426692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Searching protein 3-D structures in linear time.
    Shibuya T
    J Comput Biol; 2010 Mar; 17(3):203-19. PubMed ID: 20377441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient substructure RMSD query algorithms.
    Shibuya T
    J Comput Biol; 2007 Nov; 14(9):1201-7. PubMed ID: 17990976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LB3D: a protein three-dimensional substructure search program based on the lower bound of a root mean square deviation value.
    Terashi G; Shibuya T; Takeda-Shitaka M
    J Comput Biol; 2012 May; 19(5):493-503. PubMed ID: 22509779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear-time protein 3-D structure searching with insertions and deletions.
    Shibuya T; Jansson J; Sadakane K
    Algorithms Mol Biol; 2010 Jan; 5():7. PubMed ID: 20047663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finding All Longest Common Segments in Protein Structures Efficiently.
    Ng YK; Yin L; Ono H; Li SC
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(3):644-55. PubMed ID: 26357275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast exact algorithms for the closest string and substring problems with application to the planted (L, d)-motif model.
    Chen ZZ; Wang L
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(5):1400-10. PubMed ID: 21282867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast molecular shape matching using contact maps.
    Agarwal PK; Mustafa NH; Wang Y
    J Comput Biol; 2007 Mar; 14(2):131-43. PubMed ID: 17456012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast hinge detection algorithms for flexible protein structures.
    Shibuya T
    IEEE/ACM Trans Comput Biol Bioinform; 2010; 7(2):333-41. PubMed ID: 20431152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Representing and comparing protein folds and fold families using three-dimensional shape-density representations.
    Mavridis L; Ghoorah AW; Venkatraman V; Ritchie DW
    Proteins; 2012 Feb; 80(2):530-45. PubMed ID: 22081520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple structure alignment by optimal RMSD implies that the average structure is a consensus.
    Wang X; Snoeyink J
    Comput Syst Bioinformatics Conf; 2006; ():79-87. PubMed ID: 17369627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. YAKUSA: a fast structural database scanning method.
    Carpentier M; Brouillet S; Pothier J
    Proteins; 2005 Oct; 61(1):137-51. PubMed ID: 16049912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TRIAL: a tool for finding distant structural similarities.
    Venkateswaran JG; Song B; Kahveci T; Jermaine C
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(3):819-31. PubMed ID: 21393655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The elastic net algorithm and protein structure prediction.
    Ball KD; Erman B; Dill KA
    J Comput Chem; 2002 Jan; 23(1):77-83. PubMed ID: 11913391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regular language constrained sequence alignment revisited.
    Kucherov G; Pinhas T; Ziv-Ukelson M
    J Comput Biol; 2011 May; 18(5):771-81. PubMed ID: 21554020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geometrical comparison of two protein structures using Wigner-D functions.
    Saberi Fathi SM; White DT; Tuszynski JA
    Proteins; 2014 Oct; 82(10):2756-69. PubMed ID: 25043646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A method for aligning RNA secondary structures and its application to RNA motif detection.
    Liu J; Wang JT; Hu J; Tian B
    BMC Bioinformatics; 2005 Apr; 6():89. PubMed ID: 15817128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On complexity of protein structure alignment problem under distance constraint.
    Poleksic A
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):511-6. PubMed ID: 22025757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A relational extension of the notion of motifs: application to the common 3D protein substructures searching problem.
    Pisanti N; Soldano H; Carpentier M; Pothier J
    J Comput Biol; 2009 Dec; 16(12):1635-60. PubMed ID: 20047489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved approximation algorithms for reconstructing the history of tandem repeats.
    Chen ZZ; Wang L
    IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(3):438-53. PubMed ID: 19644172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.