These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 20427232)

  • 1. Neural control of locomotion and training-induced plasticity after spinal and cerebral lesions.
    Knikou M
    Clin Neurophysiol; 2010 Oct; 121(10):1655-68. PubMed ID: 20427232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasticity of locomotor sensorimotor interactions after peripheral and/or spinal lesions.
    Rossignol S; Barrière G; Frigon A; Barthélemy D; Bouyer L; Provencher J; Leblond H; Bernard G
    Brain Res Rev; 2008 Jan; 57(1):228-40. PubMed ID: 17822774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is the recovery of stepping following spinal cord injury mediated by modifying existing neural pathways or by generating new pathways? A perspective.
    de Leon RD; Roy RR; Edgerton VR
    Phys Ther; 2001 Dec; 81(12):1904-11. PubMed ID: 11736625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plantar cutaneous afferents normalize the reflex modulation patterns during stepping in chronic human spinal cord injury.
    Knikou M
    J Neurophysiol; 2010 Mar; 103(3):1304-14. PubMed ID: 20042700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distributed neural networks for controlling human locomotion: lessons from normal and SCI subjects.
    Ivanenko YP; Poppele RE; Lacquaniti F
    Brain Res Bull; 2009 Jan; 78(1):13-21. PubMed ID: 19070781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do electrically stimulated sensory inputs and movements lead to long-term plasticity and rehabilitation gains?
    Dobkin BH
    Curr Opin Neurol; 2003 Dec; 16(6):685-91. PubMed ID: 14624077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spinal cord injury: reversing the incorrect cortical maps by inductive lability procedure.
    Krishnan RV
    Int J Neurosci; 2004 Jun; 114(6):633-53. PubMed ID: 15204057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spinal cord plasticity in acquisition and maintenance of motor skills.
    Wolpaw JR
    Acta Physiol (Oxf); 2007 Feb; 189(2):155-69. PubMed ID: 17250566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chapter 16--spinal plasticity in the recovery of locomotion.
    Rossignol S; Frigon A; Barrière G; Martinez M; Barthélemy D; Bouyer L; Bélanger M; Provencher J; Chau C; Brustein E; Barbeau H; Giroux N; Marcoux J; Langlet C; Alluin O
    Prog Brain Res; 2011; 188():229-41. PubMed ID: 21333814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Undirected compensatory plasticity contributes to neuronal dysfunction after severe spinal cord injury.
    Beauparlant J; van den Brand R; Barraud Q; Friedli L; Musienko P; Dietz V; Courtine G
    Brain; 2013 Nov; 136(Pt 11):3347-61. PubMed ID: 24080153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasticity properties of CPG circuits in humans: impact on gait recovery.
    Molinari M
    Brain Res Bull; 2009 Jan; 78(1):22-5. PubMed ID: 19070782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reorganization of the human central nervous system.
    Schalow G; Zäch GA
    Gen Physiol Biophys; 2000 Oct; 19 Suppl 1():11-240. PubMed ID: 11252267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasticity of cortical maps: multiple triggers for adaptive reorganization following brain damage and spinal cord injury.
    Xerri C
    Neuroscientist; 2012 Apr; 18(2):133-48. PubMed ID: 21636850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasticity of the spinal neural circuitry after injury.
    Edgerton VR; Tillakaratne NJ; Bigbee AJ; de Leon RD; Roy RR
    Annu Rev Neurosci; 2004; 27():145-67. PubMed ID: 15217329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuronal function in chronic spinal cord injury: divergence between locomotor and flexion- and H-reflex activity.
    Müller R; Dietz V
    Clin Neurophysiol; 2006 Jul; 117(7):1499-507. PubMed ID: 16690351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasticity in the developing brain: implications for rehabilitation.
    Johnston MV
    Dev Disabil Res Rev; 2009; 15(2):94-101. PubMed ID: 19489084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spinal control of locomotion--from cat to man.
    Hultborn H; Nielsen JB
    Acta Physiol (Oxf); 2007 Feb; 189(2):111-21. PubMed ID: 17250563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The recovery of standing and locomotion after spinal cord injury does not require task-specific training.
    Harnie J; Doelman A; de Vette E; Audet J; Desrochers E; Gaudreault N; Frigon A
    Elife; 2019 Dec; 8():. PubMed ID: 31825306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Initiation of locomotion in lampreys.
    Dubuc R; Brocard F; Antri M; Fénelon K; Gariépy JF; Smetana R; Ménard A; Le Ray D; Viana Di Prisco G; Pearlstein E; Sirota MG; Derjean D; St-Pierre M; Zielinski B; Auclair F; Veilleux D
    Brain Res Rev; 2008 Jan; 57(1):172-82. PubMed ID: 17916380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Re-expression of locomotor function after partial spinal cord injury.
    Rossignol S; Barrière G; Alluin O; Frigon A
    Physiology (Bethesda); 2009 Apr; 24():127-39. PubMed ID: 19364915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.