BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 20427412)

  • 1. Development of a new control device for stabilizing blood level in reservoir during extracorporeal circulation.
    Momose N; Yamakoshi R; Kokubo R; Yasuda T; Iwamoto N; Umeda C; Nakajima I; Yanagisawa M; Tomizawa Y
    Perfusion; 2010 Mar; 25(2):77-82. PubMed ID: 20427412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical performance comparison between RotaFlow and CentriMag centrifugal blood pumps in an adult ECLS model.
    Yulong Guan ; Xiaowei Su ; McCoach R; Kunselman A; El-Banayosy A; Undar A
    Perfusion; 2010 Mar; 25(2):71-6. PubMed ID: 20212070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reserve-driven flow control for extracorporeal life support: proof of principle.
    Simons AP; Reesink KD; Lancé MD; van der Nagel T; van der Veen FH; Weerwind PW; Maessen JG
    Perfusion; 2010 Jan; 25(1):25-9. PubMed ID: 20118166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Device and technique for extracorporeal blood volume sequestration during hemodialysis.
    Wimmer J; Bachler I; Haditsch B; Stadlbauer V; Holzer H; Schneditz D
    ASAIO J; 2006; 52(6):662-9. PubMed ID: 17117056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of venous reservoir level on microbubbles in cardiopulmonary bypass.
    Nielsen PF; Funder JA; Jensen MØ; Nygaard H
    Perfusion; 2008 Nov; 23(6):347-53. PubMed ID: 19454563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Servoregulation of centrifugal pumps. A new technical approach to improve patient safety during long-term extracorporeal life support.
    Müller E; Münch K
    ASAIO J; 1996; 42(4):282-7. PubMed ID: 8828785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Returning reservoir blood to right atrium during extracorporeal circulation for descending aortic surgery.
    Saito S; Usui A; Sasayama K; Ueda Y
    Eur J Cardiothorac Surg; 2006 Apr; 29(4):613-5. PubMed ID: 16481187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypovolemia in extracorporeal life support can lead to arterial gaseous microemboli.
    Simons AP; Ganushchak YM; Teerenstra S; Bergmans DC; Maessen JG; Weerwind PW
    Artif Organs; 2013 Mar; 37(3):276-82. PubMed ID: 23419147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An investigational study of minimum rotational pump speed to avoid retrograde flow in three centrifugal blood pumps in a pediatric extracorporeal life support model.
    Clark JB; Guan Y; McCoach R; Kunselman AR; Myers JL; Undar A
    Perfusion; 2011 May; 26(3):185-90. PubMed ID: 21227983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a reliable automatic speed control system for rotary blood pumps.
    Vollkron M; Schima H; Huber L; Benkowski R; Morello G; Wieselthaler G
    J Heart Lung Transplant; 2005 Nov; 24(11):1878-85. PubMed ID: 16297795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficacy and safety of strategies to preserve stable extracorporeal life support flow during simulated hypovolemia.
    Simons AP; Lindelauf AA; Ganushchak YM; Maessen JG; Weerwind PW
    Perfusion; 2014 Jan; 29(1):18-24. PubMed ID: 23985423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [General approach to designing a device for artificial blood circulation].
    Klochkov AV; Melkov AI; Cherepanov AV; Khaĭtlin AI; Vakhliuev IuI; Zuev IV; Lopatkin LN
    Med Tekh; 1994; (3):10-2. PubMed ID: 7934723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PRECiSe (priming reduced extracorporeal circulation setup): results of a safety study.
    Beholz S; Kessler M; Konertz WF
    Heart Surg Forum; 2003; 6(5):311-5. PubMed ID: 14721800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamic performance and heat generation by centrifugal pumps.
    Ganushchak Y; van Marken Lichtenbelt W; van der Nagel T; de Jong DS
    Perfusion; 2006 Nov; 21(6):373-9. PubMed ID: 17312862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Affinity pump system: a new peristaltic blood pump for cardiopulmonary bypass.
    Jaggy C; Lachat M; Leskosek B; Zünd G; Turina M
    Perfusion; 2000 Jan; 15(1):77-83. PubMed ID: 10676871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow dynamics of peripheral venous catheters during extracorporeal membrane oxygenation with a centrifugal pump.
    Wenger RK; Bavaria JE; Ratcliffe MB; Bogen D; Edmunds LH
    J Thorac Cardiovasc Surg; 1988 Sep; 96(3):478-84. PubMed ID: 3411995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemodynamic evaluation of arterial and venous cannulae performance in a simulated neonatal extracorporeal life support circuit.
    Qiu F; Clark JB; Kunselman AR; Undar A; Myers JL
    Perfusion; 2011 Jul; 26(4):276-83. PubMed ID: 21558147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of a new venous control device with a bladder box system for use in ECMO.
    Setz K; Kesser K; Kopotic RJ; Cornish JD
    ASAIO J; 1992; 38(4):835-40. PubMed ID: 1450482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical experience with a novel endotoxin adsorbtion device in patients undergoing cardiac surgery.
    Blomquist S; Gustafsson V; Manolopoulos T; Pierre L
    Perfusion; 2009 Jan; 24(1):13-7. PubMed ID: 19567543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deairing of the venous drainage in standard extracorporeal circulation results in a profound reduction of arterial micro bubbles.
    Stock UA; Müller T; Bienek R; Krause H; Hartrumpf M; Albes J
    Thorac Cardiovasc Surg; 2006 Feb; 54(1):39-41. PubMed ID: 16485187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.