These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 20427620)

  • 1. Long-term, multisite, parallel, in-cell recording and stimulation by an array of extracellular microelectrodes.
    Hai A; Shappir J; Spira ME
    J Neurophysiol; 2010 Jul; 104(1):559-68. PubMed ID: 20427620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A system for MEA-based multisite stimulation.
    Jimbo Y; Kasai N; Torimitsu K; Tateno T; Robinson HP
    IEEE Trans Biomed Eng; 2003 Feb; 50(2):241-8. PubMed ID: 12665038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface.
    Moxon KA; Kalkhoran NM; Markert M; Sambito MA; McKenzie JL; Webster JT
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):881-9. PubMed ID: 15188854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advantages of using microfabricated extracellular electrodes for in vitro neuronal recording.
    Breckenridge LJ; Wilson RJ; Connolly P; Curtis AS; Dow JA; Blackshaw SE; Wilkinson CD
    J Neurosci Res; 1995 Oct; 42(2):266-76. PubMed ID: 8568928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-chip electroporation, membrane repair dynamics and transient in-cell recordings by arrays of gold mushroom-shaped microelectrodes.
    Hai A; Spira ME
    Lab Chip; 2012 Aug; 12(16):2865-73. PubMed ID: 22678065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strengthening of synchronized activity by tetanic stimulation in cortical cultures: application of planar electrode arrays.
    Jimbo Y; Robinson HP; Kawana A
    IEEE Trans Biomed Eng; 1998 Nov; 45(11):1297-304. PubMed ID: 9805828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-modified microelectrode array with flake nanostructure for neural recording and stimulation.
    Kim JH; Kang G; Nam Y; Choi YK
    Nanotechnology; 2010 Feb; 21(8):85303. PubMed ID: 20101076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changing gears from chemical adhesion of cells to flat substrata toward engulfment of micro-protrusions by active mechanisms.
    Hai A; Kamber D; Malkinson G; Erez H; Mazurski N; Shappir J; Spira ME
    J Neural Eng; 2009 Dec; 6(6):066009. PubMed ID: 19918108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon nanotube coating improves neuronal recordings.
    Keefer EW; Botterman BR; Romero MI; Rossi AF; Gross GW
    Nat Nanotechnol; 2008 Jul; 3(7):434-9. PubMed ID: 18654569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution three-dimensional extracellular recording of neuronal activity with microfabricated electrode arrays.
    Du J; Riedel-Kruse IH; Nawroth JC; Roukes ML; Laurent G; Masmanidis SC
    J Neurophysiol; 2009 Mar; 101(3):1671-8. PubMed ID: 19091921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods for isolating extracellular action potentials and removing stimulus artifacts from microelectrode recordings of neurons requiring minimal operator intervention.
    Montgomery EB; Gale JT; Huang H
    J Neurosci Methods; 2005 May; 144(1):107-25. PubMed ID: 15848245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold nanograin microelectrodes for neuroelectronic interfaces.
    Kim R; Hong N; Nam Y
    Biotechnol J; 2013 Feb; 8(2):206-14. PubMed ID: 23071004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new 3-D finite-element model based on thin-film approximation for microelectrode array recording of extracellular action potential.
    Moulin C; Glière A; Barbier D; Joucla S; Yvert B; Mailley P; Guillemaud R
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):683-92. PubMed ID: 18270005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-chip microelectronic system to interface with living cells.
    Heer F; Hafizovic S; Ugniwenko T; Frey U; Franks W; Perriard E; Perriard JC; Blau A; Ziegler C; Hierlemann A
    Biosens Bioelectron; 2007 May; 22(11):2546-53. PubMed ID: 17097869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices.
    Frey U; Egert U; Heer F; Hafizovic S; Hierlemann A
    Biosens Bioelectron; 2009 Mar; 24(7):2191-8. PubMed ID: 19157842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multisite recording of extracellular potentials produced by microchannel-confined neurons in-vitro.
    Claverol-Tinturé E; Cabestany J; Rosell X
    IEEE Trans Biomed Eng; 2007 Feb; 54(2):331-5. PubMed ID: 17278590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution extracellular stimulation of dispersed hippocampal culture with high-density CMOS multielectrode array based on non-Faradaic electrodes.
    Lei N; Ramakrishnan S; Shi P; Orcutt JS; Yuste R; Kam LC; Shepard KL
    J Neural Eng; 2011 Aug; 8(4):044003. PubMed ID: 21725154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracellular stimulation window explained by a geometry-based model of the neuron-electrode contact.
    Buitenweg JR; Rutten WL; Marani E
    IEEE Trans Biomed Eng; 2002 Dec; 49(12 Pt 2):1591-9. PubMed ID: 12549741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polytrodes: high-density silicon electrode arrays for large-scale multiunit recording.
    Blanche TJ; Spacek MA; Hetke JF; Swindale NV
    J Neurophysiol; 2005 May; 93(5):2987-3000. PubMed ID: 15548620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-to-one neuron-electrode interfacing.
    Greenbaum A; Anava S; Ayali A; Shein M; David-Pur M; Ben-Jacob E; Hanein Y
    J Neurosci Methods; 2009 Sep; 182(2):219-24. PubMed ID: 19540264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.