BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 20428559)

  • 1. Theoretical analysis of hydrogen bonding in catechol-n(H(2)O) clusters (n = 0...3).
    Gómez-Zaleta B; Gómez-Balderas R; Hernández-Trujillo J
    Phys Chem Chem Phys; 2010 May; 12(18):4783-90. PubMed ID: 20428559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen bonding in phenol, water, and phenol-water clusters.
    Parthasarathi R; Subramanian V; Sathyamurthy N
    J Phys Chem A; 2005 Feb; 109(5):843-50. PubMed ID: 16838955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical study of binding interactions and vibrational Raman spectra of water in hydrogen-bonded anionic complexes: (H2O)n- (n = 2 and 3), H2O...X- (X = F, Cl, Br, and I), and H2O...M- (M = Cu, Ag, and Au).
    Wu DY; Duan S; Liu XM; Xu YC; Jiang YX; Ren B; Xu X; Lin SH; Tian ZQ
    J Phys Chem A; 2008 Feb; 112(6):1313-21. PubMed ID: 18215023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nature of the N-H...S hydrogen bond.
    Biswal HS; Wategaonkar S
    J Phys Chem A; 2009 Nov; 113(46):12763-73. PubMed ID: 19831376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A theoretical and experimental study of water complexes of m-aminobenzoic acid MABA.(H2O)n (n = 1 and 2).
    He Y; Wu C; Kong W
    J Phys Chem A; 2005 Feb; 109(5):748-53. PubMed ID: 16838942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvent effects on the conformational preferences of serotonin: serotonin-(H(2)O)(n), n = 1,2.
    LeGreve TA; James WH; Zwier TS
    J Phys Chem A; 2009 Jan; 113(2):399-410. PubMed ID: 19099446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study of N-methylacetamide in water clusters: based on atom-bond electronegativity equalization method fused into molecular mechanics.
    Yang ZZ; Qian P
    J Chem Phys; 2006 Aug; 125(6):64311. PubMed ID: 16942290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure, stability, and infrared spectroscopy of (H2O)nNH4(+) clusters: a theoretical study at zero and finite temperature.
    Douady J; Calvo F; Spiegelman F
    J Chem Phys; 2008 Oct; 129(15):154305. PubMed ID: 19045191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of conformational changes in 1-propanol-water complexes by FTIR spectroscopy.
    Tong HJ; Yu JY; Zhang YH; Reid JP
    J Phys Chem A; 2010 Jul; 114(25):6795-802. PubMed ID: 20518517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopically determined force field for water dimer: physically enhanced treatment of hydrogen bonding in molecular mechanics energy functions.
    Mannfors B; Palmo K; Krimm S
    J Phys Chem A; 2008 Dec; 112(49):12667-78. PubMed ID: 19012387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical study of the structures and vibrational spectra of the hydrogen-bonded systems of 4-cyanophenol with N-bases.
    Dimitrova Y; Tsenov JA
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Nov; 68(3):454-9. PubMed ID: 17336137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infrared spectroscopy of hydrogen-bonded 2-fluoropyridine-water clusters in supersonic jets.
    Nibu Y; Marui R; Shimada H
    J Phys Chem A; 2006 Aug; 110(31):9627-32. PubMed ID: 16884196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron propagator theory study of N-/O-methylglycine conformers.
    Tian SX
    J Chem Phys; 2005 Dec; 123(24):244310. PubMed ID: 16396540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structures of alkali metal ion-adenine complexes and hydrated complexes by IRMPD spectroscopy and electronic structure calculations.
    Rajabi K; Gillis EA; Fridgen TD
    J Phys Chem A; 2010 Mar; 114(10):3449-56. PubMed ID: 20163169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural rearrangements in water viewed through two-dimensional infrared spectroscopy.
    Roberts ST; Ramasesha K; Tokmakoff A
    Acc Chem Res; 2009 Sep; 42(9):1239-49. PubMed ID: 19585982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pseudo-Jahn-Teller origin of the low barrier hydrogen bond in N(2)H(7) (+).
    García-Fernández P; García-Canales L; García-Lastra JM; Junquera J; Moreno M; Aramburu JA
    J Chem Phys; 2008 Sep; 129(12):124313. PubMed ID: 19045029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of vibrational spectra of L-alanylglycine based on density functional theory calculations.
    Padmaja L; Ravikumar C; James C; Jayakumar VS; Hubert Joe I
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):252-62. PubMed ID: 18243781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrated alizarin complexes: hydrogen bonding and proton transfer.
    Huh H; Cho SH; Heo J; Kim NJ; Kim SK
    Phys Chem Chem Phys; 2012 Jul; 14(25):8919-24. PubMed ID: 22514001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic and quantum chemical study of cyclopropylmethylphosphine, a candidate for intramolecular hydrogen bonding.
    Cole GC; Møllendal H; Guillemin JC
    J Phys Chem A; 2005 Aug; 109(32):7134-9. PubMed ID: 16834077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intermolecular charge flux as the origin of infrared intensity enhancement upon halogen-bond formation of the peptide group.
    Torii H
    J Chem Phys; 2010 Jul; 133(3):034504. PubMed ID: 20649334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.