These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 20428884)

  • 1. Energetics of swimming: a historical perspective.
    Zamparo P; Capelli C; Pendergast D
    Eur J Appl Physiol; 2011 Mar; 111(3):367-78. PubMed ID: 20428884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An energy balance of front crawl.
    Zamparo P; Pendergast DR; Mollendorf J; Termin A; Minetti AE
    Eur J Appl Physiol; 2005 May; 94(1-2):134-44. PubMed ID: 15702343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The determinants of performance in master swimmers: a cross-sectional study on the age-related changes in propelling efficiency, hydrodynamic position and energy cost of front crawl.
    Zamparo P; Dall'ora A; Toneatto A; Cortesi M; Gatta G
    Eur J Appl Physiol; 2012 Dec; 112(12):3949-57. PubMed ID: 22426578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interplay between propelling efficiency, hydrodynamic position and energy cost of front crawl in 8 to 19-year-old swimmers.
    Zamparo P; Lazzer S; Antoniazzi C; Cedolin S; Avon R; Lesa C
    Eur J Appl Physiol; 2008 Nov; 104(4):689-99. PubMed ID: 18636269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological determinants of best performances in human locomotion.
    Capelli C
    Eur J Appl Physiol Occup Physiol; 1999 Sep; 80(4):298-307. PubMed ID: 10483799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulated front crawl swimming performance related to critical speed and critical power.
    Toussaint HM; Wakayoshi K; Hollander AP; Ogita F
    Med Sci Sports Exerc; 1998 Jan; 30(1):144-51. PubMed ID: 9475656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energetics of competitive swimming. Implications for training programmes.
    Toussaint HM; Hollander AP
    Sports Med; 1994 Dec; 18(6):384-405. PubMed ID: 7886354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The energy cost of swimming and its determinants.
    Zamparo P; Cortesi M; Gatta G
    Eur J Appl Physiol; 2020 Jan; 120(1):41-66. PubMed ID: 31807901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetics of optimal undulatory swimming organisms.
    Tokić G; Yue DKP
    PLoS Comput Biol; 2019 Oct; 15(10):e1007387. PubMed ID: 31671088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An analysis of performance in human locomotion.
    Ferretti G; Bringard A; Perini R
    Eur J Appl Physiol; 2011 Mar; 111(3):391-401. PubMed ID: 20437056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High postural costs and anaerobic metabolism during swimming support the hypothesis of a U-shaped metabolism-speed curve in fishes.
    Di Santo V; Kenaley CP; Lauder GV
    Proc Natl Acad Sci U S A; 2017 Dec; 114(49):13048-13053. PubMed ID: 29158392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodynamics-based functional forms of activity metabolism: a case for the power-law polynomial function in animal swimming energetics.
    Papadopoulos A
    PLoS One; 2009; 4(3):e4852. PubMed ID: 19333397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interplay between arms-only propelling efficiency, power output and speed in master swimmers.
    Zamparo P; Turri E; Peterson Silveira R; Poli A
    Eur J Appl Physiol; 2014 Jun; 114(6):1259-68. PubMed ID: 24610246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximal oxygen uptake and cardiorespiratory response to maximal 400-m free swimming, running and cycling tests in competitive swimmers.
    Rodríguez FA
    J Sports Med Phys Fitness; 2000 Jun; 40(2):87-95. PubMed ID: 11034427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy balance of human locomotion in water.
    Pendergast D; Zamparo P; di Prampero PE; Capelli C; Cerretelli P; Termin A; Craig A; Bushnell D; Paschke D; Mollendorf J
    Eur J Appl Physiol; 2003 Oct; 90(3-4):377-86. PubMed ID: 12955519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical and propelling efficiency in swimming derived from exercise using a laboratory-based whole-body swimming ergometer.
    Zamparo P; Swaine IL
    J Appl Physiol (1985); 2012 Aug; 113(4):584-94. PubMed ID: 22723633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Economy and efficiency of swimming at the surface with fins of different size and stiffness.
    Zamparo P; Pendergast DR; Termin A; Minetti AE
    Eur J Appl Physiol; 2006 Mar; 96(4):459-70. PubMed ID: 16341874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanics, energetics and coordination during extreme swimming intensity: effect of performance level.
    Ribeiro J; Figueiredo P; Morais S; Alves F; Toussaint H; Vilas-Boas JP; Fernandes RJ
    J Sports Sci; 2017 Aug; 35(16):1614-1621. PubMed ID: 27602781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical power, thrust power and propelling efficiency: relationships with elite sprint swimming performance.
    Gatta G; Cortesi M; Swaine I; Zamparo P
    J Sports Sci; 2018 Mar; 36(5):506-512. PubMed ID: 28471718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of temperature on maximum swimming speed and cost of transport in juvenile European sea bass (Dicentrarchus labrax).
    Claireaux G; Couturier C; Groison AL
    J Exp Biol; 2006 Sep; 209(Pt 17):3420-8. PubMed ID: 16916977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.