These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 20429512)
1. Facile fabrication of hierarchical hollow microspheres assembled by titanate nanotubes. Tang Y; Yang L; Chen J; Qiu Z Langmuir; 2010 Jun; 26(12):10111-4. PubMed ID: 20429512 [TBL] [Abstract][Full Text] [Related]
2. Plate, wire, mesh, microsphere, and microtube composed of sodium titanate nanotubes on a titanium metal template. Yada M; Inoue Y; Uota M; Torikai T; Watari T; Noda I; Hotokebuchi T Langmuir; 2007 Feb; 23(5):2815-23. PubMed ID: 17269803 [TBL] [Abstract][Full Text] [Related]
3. Microstructural control of mesoporous bulk composed of TiO(2)-derived titanate nanotubes. Nakahira A; Kubo T; Yamasaki Y ACS Appl Mater Interfaces; 2010 Apr; 2(4):1136-40. PubMed ID: 20423132 [TBL] [Abstract][Full Text] [Related]
4. Nanotube formation from a sodium titanate powder via low-temperature acid treatment. Tsai CC; Teng H Langmuir; 2008 Apr; 24(7):3434-8. PubMed ID: 18229958 [TBL] [Abstract][Full Text] [Related]
5. Fabrication and photovoltaic performance of hierarchically titanate tubular structures self-assembled by nanotubes and nanosheets. Yu J; Li Q; Fan J; Cheng B Chem Commun (Camb); 2011 Aug; 47(32):9161-3. PubMed ID: 21761051 [TBL] [Abstract][Full Text] [Related]
6. A facile vapor-phase hydrothermal method for direct growth of titanate nanotubes on a titanium substrate via a distinctive nanosheet roll-up mechanism. Liu P; Zhang H; Liu H; Wang Y; Yao X; Zhu G; Zhang S; Zhao H J Am Chem Soc; 2011 Nov; 133(47):19032-5. PubMed ID: 22035232 [TBL] [Abstract][Full Text] [Related]
7. Large Seebeck coefficients of protonated titanate nanotubes for high-temperature thermoelectric conversion. Miao L; Tanemura S; Huang R; Liu CY; Huang CM; Xu G ACS Appl Mater Interfaces; 2010 Aug; 2(8):2355-9. PubMed ID: 20735107 [TBL] [Abstract][Full Text] [Related]
8. Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions. Zhu HY; Lan Y; Gao XP; Ringer SP; Zheng ZF; Song DY; Zhao JC J Am Chem Soc; 2005 May; 127(18):6730-6. PubMed ID: 15869295 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and characterization of ion-exchangeable titanate nanotubes. Sun X; Li Y Chemistry; 2003 May; 9(10):2229-38. PubMed ID: 12772297 [TBL] [Abstract][Full Text] [Related]
10. Template-based fabrication of SrTiO3 and BaTiO3 nanotubes. Chen YY; Yu BY; Wang JH; Cochran RE; Shyue JJ Inorg Chem; 2009 Jan; 48(2):681-6. PubMed ID: 19086907 [TBL] [Abstract][Full Text] [Related]
11. Crystal structures of titanate nanotubes: a Raman scattering study. Gao T; Fjellvåg H; Norby P Inorg Chem; 2009 Feb; 48(4):1423-32. PubMed ID: 19143511 [TBL] [Abstract][Full Text] [Related]
12. An aqueous, alkaline route to titanate nanotubes under atmospheric pressure conditions. Bavykin DV; Cressey BA; Light ME; Walsh FC Nanotechnology; 2008 Jul; 19(27):275604. PubMed ID: 21828711 [TBL] [Abstract][Full Text] [Related]
13. Heterogeneous photocatalysis of methylene blue over titanate nanotubes: effect of adsorption. Xiong L; Sun W; Yang Y; Chen C; Ni J J Colloid Interface Sci; 2011 Apr; 356(1):211-6. PubMed ID: 21288532 [TBL] [Abstract][Full Text] [Related]
14. Synthesis and growth mechanism of titanate and titania one-dimensional nanostructures self-assembled into hollow micrometer-scale spherical aggregates. Mao Y; Kanungo M; Hemraj-Benny T; Wong SS J Phys Chem B; 2006 Jan; 110(2):702-10. PubMed ID: 16471591 [TBL] [Abstract][Full Text] [Related]
15. Role of Ti-O bonds in phase transitions of TiO2. Nosheen S; Galasso FS; Suib SL Langmuir; 2009 Jul; 25(13):7623-30. PubMed ID: 19453129 [TBL] [Abstract][Full Text] [Related]
16. Highly uniform Gd2O3 hollow microspheres: template-directed synthesis and luminescence properties. Jia G; You H; Liu K; Zheng Y; Guo N; Zhang H Langmuir; 2010 Apr; 26(7):5122-8. PubMed ID: 19921796 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of tubular titanate via a self-assembly and self-removal process. Wei M; Zhou H; Konishi Y; Ichihara M; Sugiha H; Arakawa H Inorg Chem; 2006 Jul; 45(14):5684-90. PubMed ID: 16813434 [TBL] [Abstract][Full Text] [Related]
18. Hydrothermal etching assisted crystallization: a facile route to functional yolk-shell titanate microspheres with ultrathin nanosheets-assembled double shells. Li W; Deng Y; Wu Z; Qian X; Yang J; Wang Y; Gu D; Zhang F; Tu B; Zhao D J Am Chem Soc; 2011 Oct; 133(40):15830-3. PubMed ID: 21905658 [TBL] [Abstract][Full Text] [Related]
19. Facile formation of branched titanate nanotubes to grow a three-dimensional nanotubular network directly on a solid substrate. Zhang H; Liu P; Wang H; Yu H; Zhang S; Zhu H; Peng F; Zhao H Langmuir; 2010 Feb; 26(3):1574-8. PubMed ID: 20039654 [TBL] [Abstract][Full Text] [Related]
20. Formation mechanism of TiO2-derived titanate nanotubes prepared by the hydrothermal process. Nakahira A; Kubo T; Numako C Inorg Chem; 2010 Jul; 49(13):5845-52. PubMed ID: 20527822 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]