BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 20429805)

  • 1. Evolution of the percutaneous penetration and distribution of uranyl nitrate as a function of skin-barrier integrity: an in vitro assessment.
    Petitot F; Moreels AM; Paquet F
    Drug Chem Toxicol; 2010 Jul; 33(3):316-24. PubMed ID: 20429805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Percutaneous penetration of uranium in rats after a contamination on intact or wounded skin.
    Petitot F; Gautier C; Moreels AM; Frelon S; Paquet F
    Radiat Prot Dosimetry; 2007; 127(1-4):125-30. PubMed ID: 17553861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro evaluation of percutaneous diffusion of uranyl nitrate through intact or excoriated skin of rat and pig.
    Petitot F; Moreels AM; Paquet F
    Can J Physiol Pharmacol; 2004 Feb; 82(2):133-9. PubMed ID: 15052294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cutaneous barrier function after cold exposure in hairless mice: a model to demonstrate how cold interferes with barrier homeostasis among workers in the fish-processing industry.
    Halkier-Sørensen L; Menon GK; Elias PM; Thestrup-Pedersen K; Feingold KR
    Br J Dermatol; 1995 Mar; 132(3):391-401. PubMed ID: 7718455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ability to estimate relative percutaneous penetration via a surrogate maker - trans epidermal water loss?
    Hui X; Elkeeb R; Chan H; Maibach HI
    Skin Res Technol; 2012 Feb; 18(1):108-13. PubMed ID: 21605169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The correlation between transepidermal water loss and percutaneous absorption: an overview.
    Levin J; Maibach H
    J Control Release; 2005 Mar; 103(2):291-9. PubMed ID: 15763614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ex vivo decrease in uranium diffusion through intact and excoriated pig ear skin by a calixarene nanoemulsion.
    Spagnul A; Bouvier-Capely C; Phan G; Landon G; Tessier C; Suhard D; Rebière F; Agarande M; Fattal E
    Eur J Pharm Biopharm; 2011 Oct; 79(2):258-67. PubMed ID: 21620969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transepidermal water loss for probing full-thickness skin barrier function: correlation with tritiated water flux, sensitivity to punctures and diverse surfactant exposures.
    Elmahjoubi E; Frum Y; Eccleston GM; Wilkinson SC; Meidan VM
    Toxicol In Vitro; 2009 Oct; 23(7):1429-35. PubMed ID: 19577629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Percutaneous absorption and skin irritation upon low-level prolonged dermal exposure to nonane, dodecane and tetradecane in hairless rats.
    Babu RJ; Chatterjee A; Ahaghotu E; Singh M
    Toxicol Ind Health; 2004 Sep; 20(6-10):109-18. PubMed ID: 15941007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of solid maltose microneedles and their use for transdermal delivery.
    Kolli CS; Banga AK
    Pharm Res; 2008 Jan; 25(1):104-13. PubMed ID: 17597381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporation and distribution of uranium in rats after a contamination on intact or wounded skin.
    Petitot F; Frelon S; Moreels AM; Claraz M; Delissen O; Tourlonias E; Dhieux B; Maubert C; Paquet F
    Health Phys; 2007 May; 92(5):464-74. PubMed ID: 17429305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo microdialysis for the investigation of drug levels in the dermis and the effect of barrier perturbation on cutaneous drug penetration. Studies in hairless rats and human subjects.
    Benfeldt E
    Acta Derm Venereol Suppl (Stockh); 1999; 206():1-59. PubMed ID: 10605601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Barrier function of intact and impaired skin: percutaneous penetration of caffeine and salicylic acid.
    Rubio L; Alonso C; López O; Rodríguez G; Coderch L; Notario J; de la Maza A; Parra JL
    Int J Dermatol; 2011 Jul; 50(7):881-9. PubMed ID: 21699529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skin penetration flux and lag-time of steroids across hydrated and dehydrated human skin in vitro.
    Hikima T; Maibach H
    Biol Pharm Bull; 2006 Nov; 29(11):2270-3. PubMed ID: 17077527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Qualitative and quantitative comparison of heat separated epidermis and dermatomed skin in percutaneous absorption studies.
    Atrux-Tallau N; Pirot F; Falson F; Roberts MS; Maibach HI
    Arch Dermatol Res; 2007 Dec; 299(10):507-11. PubMed ID: 17901965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Percutaneous absorption of uranium compounds.
    de Rey BM; Lanfranchi HE; Cabrini RL
    Environ Res; 1983 Apr; 30(2):480-91. PubMed ID: 6832127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of an in vitro model for studying the penetration of chemicals through compromised skin.
    Davies DJ; Heylings JR; McCarthy TJ; Correa CM
    Toxicol In Vitro; 2015 Feb; 29(1):176-81. PubMed ID: 25450748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Permeation of hyaluronan tetrasaccharides through hairless mouse skin: an in vitro and in vivo study.
    Kage M; Tokudome Y; Hashimoto F
    Arch Dermatol Res; 2013 Jan; 305(1):69-77. PubMed ID: 22740084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variation in barrier impairment and inflammation of human skin as determined by sodium lauryl sulphate penetration rate.
    de Jongh CM; Jakasa I; Verberk MM; Kezic S
    Br J Dermatol; 2006 Apr; 154(4):651-7. PubMed ID: 16536807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristic differences in barrier and hygroscopic properties between normal and cosmetic dry skin. I. Enhanced barrier analysis with sequential tape-stripping.
    Lu N; Chandar P; Tempesta D; Vincent C; Bajor J; McGuiness H
    Int J Cosmet Sci; 2014 Apr; 36(2):167-74. PubMed ID: 24397786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.