These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 20429923)

  • 1. Adaptive coarse-grained Monte Carlo simulation of reaction and diffusion dynamics in heterogeneous plasma membranes.
    Collins S; Stamatakis M; Vlachos DG
    BMC Bioinformatics; 2010 Apr; 11():218. PubMed ID: 20429923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial modeling of dimerization reaction dynamics in the plasma membrane: Monte Carlo vs. continuum differential equations.
    Mayawala K; Vlachos DG; Edwards JS
    Biophys Chem; 2006 Jun; 121(3):194-208. PubMed ID: 16504372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo simulations of plasma membrane corral-induced EGFR clustering.
    Costa MN; Radhakrishnan K; Edwards JS
    J Biotechnol; 2011 Feb; 151(3):261-70. PubMed ID: 21167222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer simulations of a heterogeneous membrane with enhanced sampling techniques.
    Cherniavskyi YK; Fathizadeh A; Elber R; Tieleman DP
    J Chem Phys; 2020 Oct; 153(14):144110. PubMed ID: 33086798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coarse-grained lattice kinetic Monte Carlo simulation of systems of strongly interacting particles.
    Dai J; Seider WD; Sinno T
    J Chem Phys; 2008 May; 128(19):194705. PubMed ID: 18500884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatially adaptive lattice coarse-grained Monte Carlo simulations for diffusion of interacting molecules.
    Chatterjee A; Vlachos DG; Katsoulakis MA
    J Chem Phys; 2004 Dec; 121(22):11420-31. PubMed ID: 15634102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computing macroscopic reaction rates in reaction-diffusion systems using Monte Carlo simulations.
    Swailem M; Täuber UC
    Phys Rev E; 2024 Jul; 110(1-1):014124. PubMed ID: 39160995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coarse-grained Monte Carlo simulations of non-equilibrium systems.
    Liu X; Crocker JC; Sinno T
    J Chem Phys; 2013 Jun; 138(24):244111. PubMed ID: 23822231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale spatial Monte Carlo simulations: multigriding, computational singular perturbation, and hierarchical stochastic closures.
    Chatterjee A; Vlachos DG
    J Chem Phys; 2006 Feb; 124(6):64110. PubMed ID: 16483199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coarse-grained stochastic processes for microscopic lattice systems.
    Katsoulakis MA; Majda AJ; Vlachos DG
    Proc Natl Acad Sci U S A; 2003 Feb; 100(3):782-7. PubMed ID: 12552105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human epidermal growth factor receptor (EGFR) aligned on the plasma membrane adopts key features of Drosophila EGFR asymmetry.
    Tynan CJ; Roberts SK; Rolfe DJ; Clarke DT; Loeffler HH; Kästner J; Winn MD; Parker PJ; Martin-Fernandez ML
    Mol Cell Biol; 2011 Jun; 31(11):2241-52. PubMed ID: 21444717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational modeling reveals molecular details of epidermal growth factor binding.
    Mayawala K; Vlachos DG; Edwards JS
    BMC Cell Biol; 2005 Nov; 6():41. PubMed ID: 16318625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved sampling for simulations of interfacial membrane proteins: application of generalized shadow hybrid Monte Carlo to a peptide toxin/bilayer system.
    Wee CL; Sansom MS; Reich S; Akhmatskaya E
    J Phys Chem B; 2008 May; 112(18):5710-7. PubMed ID: 18412407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lateral dynamics of proteins with polybasic domain on anionic membranes: a dynamic Monte-Carlo study.
    Kiselev VY; Marenduzzo D; Goryachev AB
    Biophys J; 2011 Mar; 100(5):1261-70. PubMed ID: 21354399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lateral dynamics of charged lipids and peripheral proteins in spatially heterogeneous membranes: comparison of continuous and Monte Carlo approaches.
    Kiselev VY; Leda M; Lobanov AI; Marenduzzo D; Goryachev AB
    J Chem Phys; 2011 Oct; 135(15):155103. PubMed ID: 22029337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiscale modeling of lipids and lipid bilayers.
    Lyubartsev AP
    Eur Biophys J; 2005 Dec; 35(1):53-61. PubMed ID: 16133633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coarse-grained simulations of membranes under tension.
    Neder J; West B; Nielaba P; Schmid F
    J Chem Phys; 2010 Mar; 132(11):115101. PubMed ID: 20331316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A general method for spatially coarse-graining Metropolis Monte Carlo simulations onto a lattice.
    Liu X; Seider WD; Sinno T
    J Chem Phys; 2013 Mar; 138(11):114104. PubMed ID: 23534624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coarse-grained lattice Monte Carlo simulations with continuous interaction potentials.
    Liu X; Seider WD; Sinno T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026708. PubMed ID: 23005883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Wang-Landau study of a lattice model for lipid bilayer self-assembly.
    Gai L; Maerzke K; Cummings PT; McCabe C
    J Chem Phys; 2012 Oct; 137(14):144901. PubMed ID: 23061859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.