BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

470 related articles for article (PubMed ID: 20430016)

  • 1. Chromium genotoxicity: A double-edged sword.
    Nickens KP; Patierno SR; Ceryak S
    Chem Biol Interact; 2010 Nov; 188(2):276-88. PubMed ID: 20430016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complexities of chromium carcinogenesis: role of cellular response, repair and recovery mechanisms.
    O'Brien TJ; Ceryak S; Patierno SR
    Mutat Res; 2003 Dec; 533(1-2):3-36. PubMed ID: 14643411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genotoxicity and mutagenicity of chromium(VI)/ascorbate-generated DNA adducts in human and bacterial cells.
    Quievryn G; Peterson E; Messer J; Zhitkovich A
    Biochemistry; 2003 Feb; 42(4):1062-70. PubMed ID: 12549927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of the in vitro genotoxicity of tri- and hexavalent chromium.
    Blasiak J; Kowalik J
    Mutat Res; 2000 Aug; 469(1):135-45. PubMed ID: 10946250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromium-induced genotoxicity and apoptosis: relationship to chromium carcinogenesis (review).
    Singh J; Carlisle DL; Pritchard DE; Patierno SR
    Oncol Rep; 1998; 5(6):1307-18. PubMed ID: 9769362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracing the tracks of genotoxicity by trivalent and hexavalent chromium in Drosophila melanogaster.
    Mishra M; Sharma A; Negi MP; Dwivedi UN; Chowdhuri DK
    Mutat Res; 2011 May; 722(1):44-51. PubMed ID: 21382505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromium in drinking water: sources, metabolism, and cancer risks.
    Zhitkovich A
    Chem Res Toxicol; 2011 Oct; 24(10):1617-29. PubMed ID: 21766833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleotide excision repair functions in the removal of chromium-induced DNA damage in mammalian cells.
    O'Brien TJ; Brooks BR; Patierno SR
    Mol Cell Biochem; 2005 Nov; 279(1-2):85-95. PubMed ID: 16283517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of particulate hexavalent chromium cytotoxicity and genotoxicity in human and leatherback sea turtle lung cells from a one environmental health perspective.
    Speer RM; Wise SS; Croom-Perez TJ; Aboueissa AM; Martin-Bras M; Barandiaran M; Bermúdez E; Wise JP
    Toxicol Appl Pharmacol; 2019 Aug; 376():70-81. PubMed ID: 31108106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical mechanisms of DNA damage by carcinogenic chromium(VI).
    Krawic C; Zhitkovich A
    Adv Pharmacol; 2023; 96():25-46. PubMed ID: 36858775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reductive activation with cysteine represents a chromium(III)-dependent pathway in the induction of genotoxicity by carcinogenic chromium(VI).
    Zhitkovich A; Quievryn G; Messer J; Motylevich Z
    Environ Health Perspect; 2002 Oct; 110 Suppl 5(Suppl 5):729-31. PubMed ID: 12426121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ascorbate acts as a highly potent inducer of chromate mutagenesis and clastogenesis: linkage to DNA breaks in G2 phase by mismatch repair.
    Reynolds M; Stoddard L; Bespalov I; Zhitkovich A
    Nucleic Acids Res; 2007; 35(2):465-76. PubMed ID: 17169990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resistance to apoptosis, increased growth potential, and altered gene expression in cells that survived genotoxic hexavalent chromium [Cr(VI)] exposure.
    Pritchard DE; Ceryak S; Ramsey KE; O'Brien TJ; Ha L; Fornsaglio JL; Stephan DA; Patierno SR
    Mol Cell Biochem; 2005 Nov; 279(1-2):169-81. PubMed ID: 16283527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromium (VI) induces both bulky DNA adducts and oxidative DNA damage at adenines and guanines in the p53 gene of human lung cells.
    Arakawa H; Weng MW; Chen WC; Tang MS
    Carcinogenesis; 2012 Oct; 33(10):1993-2000. PubMed ID: 22791815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incision of trivalent chromium [Cr(III)]-induced DNA damage by Bacillus caldotenax UvrABC endonuclease.
    O'Brien TJ; Jiang G; Chun G; Mandel HG; Westphal CS; Kahen K; Montaser A; States JC; Patierno SR
    Mutat Res; 2006 Nov; 610(1-2):85-92. PubMed ID: 16890479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Bacillus subtilis error prevention oxidized guanine system in counteracting hexavalent chromium-promoted oxidative DNA damage.
    Santos-Escobar F; Gutiérrez-Corona JF; Pedraza-Reyes M
    Appl Environ Microbiol; 2014 Sep; 80(17):5493-502. PubMed ID: 24973075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epigenetic downregulation of O
    Wang Z; Liu Z; Wang PS; Lin HP; Rea M; Kondo K; Yang C
    Environ Pollut; 2024 Jan; 341():122978. PubMed ID: 37995958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromium(VI) reduction by catechol(amine)s results in DNA cleavage in vitro: relevance to chromium genotoxicity.
    Pattison DI; Davies MJ; Levina A; Dixon NE; Lay PA
    Chem Res Toxicol; 2001 May; 14(5):500-10. PubMed ID: 11368547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An evaluation of the mode of action framework for mutagenic carcinogens case study II: chromium (VI).
    McCarroll N; Keshava N; Chen J; Akerman G; Kligerman A; Rinde E
    Environ Mol Mutagen; 2010 Mar; 51(2):89-111. PubMed ID: 19708067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromium (III) and chromium (VI) as important players in the induction of genotoxicity - current view.
    Sawicka E; Jurkowska K; Piwowar A
    Ann Agric Environ Med; 2021 Mar; 28(1):1-10. PubMed ID: 33775062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.