BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 204301)

  • 1. Cellular site and state combination of the adenosine 3':5'-cyclic monophosphate persisting after excitation of cerebral tissues.
    Newman M; McIlwain H
    Biochem J; 1978 Jan; 170(1):73-9. PubMed ID: 204301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Change of cycle AMP level in synaptosomes from cerebral cortex; increase by adenosine derivatives.
    Kobayashi K; Kuroda Y; Yoshioka M
    J Neurochem; 1981 Jan; 36(1):86-91. PubMed ID: 6257852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adenosine 3':5'-cyclic monophosphate in nerve-terminal fractions from neocortical tissues: its augmentation by a post-stimulation process [proceedings].
    Newman ME; McIlwain H
    Biochem Soc Trans; 1977; 5(4):1074-5. PubMed ID: 199487
    [No Abstract]   [Full Text] [Related]  

  • 4. Cyclic AMP-binding capacities and histone kinase activation in subcellular components of neocortical tissue. Differential responses to three neurohumoural agents.
    Patel J; Newman M; McIlwain H
    Biochem J; 1981 Feb; 194(2):621-6. PubMed ID: 6118136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Turnover of protein-bound serine phosphate in respiring slices of guinea-pig cerebral cortex. Effects of putative transmitters, tetrodotoxin and other agents.
    Reddington M; Rodnight R; Williams M
    Biochem J; 1973 Mar; 132(3):475-82. PubMed ID: 4353378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic AMP-generating systems in cell-free preparations from guinea pig cerebral cortex: loss of adenosine and amine responsiveness due to low levels of endogenous adenosine.
    McNeal ET; Creveling CR; Daly JW
    J Neurochem; 1980 Aug; 35(2):338-42. PubMed ID: 6256482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The stimulatory effect of the boiled supernatant on cyclic AMP formation in synaptosomes from rat cerebral cortex.
    Izumi H; Oyama H; Ozawa H
    Jpn J Pharmacol; 1975 Aug; 25(4):375-81. PubMed ID: 173909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal changes in the calcium-dependence of the histamine H1-receptor-stimulation of cyclic AMP accumulation in guinea-pig cerebral cortex.
    Donaldson J; Brown AM; Hill SJ
    Br J Pharmacol; 1989 Dec; 98(4):1365-75. PubMed ID: 2558762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulation of adenosine 3',5'-monophosphate formation in guinea-pig cerebral cortical slices in a calcium free medium.
    Schultz J; Kleefeld G
    Naunyn Schmiedebergs Arch Pharmacol; 1975; 287(3):289-96. PubMed ID: 168504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adenosine as a constituent of the brain and of isolated cerebral tissues, and its relationship to the generation of adenosine 3':5'-cyclic monophosphate.
    Newman M; McIlwain H
    Biochem J; 1977 Apr; 164(1):131-7. PubMed ID: 195579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation of cell-free brain cyclic nucleotide phosphodiesterase activities to cyclic AMP decay in intact brain slices.
    Whalin ME; Garrett RL; Thompson WJ; Strada SJ
    Second Messengers Phosphoproteins; 1988-1989; 12(5-6):311-25. PubMed ID: 2856115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ontogeny of adenosine 3',5'-monophosphate metabolism in guinea pig cerebral cortex. I. Development of responses to histamine, norepinephrine and adenosine.
    Shonk RF; Rall TW
    Mol Cell Biochem; 1987 Feb; 73(2):141-55. PubMed ID: 3031446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of phosphodiesterase isoenzymes in regulating intracellular cyclic AMP in adenosine-stimulated smooth muscle cells.
    Xiong Y; Westhead EW; Slakey LL
    Biochem J; 1995 Jan; 305 ( Pt 2)(Pt 2):627-33. PubMed ID: 7832782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redistribution of adenine derivatives among subcellular fractions from guinea pig neocortical tissues, on incubation in vitro.
    Barberis C; McIlwain H
    J Neurochem; 1977 Jul; 29(1):77-81. PubMed ID: 886323
    [No Abstract]   [Full Text] [Related]  

  • 15. Protein phosphorylation in respiring slices of guinea-pig cerebral cortex. Evidence for a role for noradrenaline and adenosine 3':5'-cyclic monophosphate in the increased phosphorylation observed on application of electrical pulses.
    Williams M; Rodnight R
    Biochem J; 1976 Jan; 154(1):163-70. PubMed ID: 6016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclic adenosine 3',5'-monophosphate in guinea-pig cerebral cortical slices: studies on the role of adenosine.
    Schultz J
    J Neurochem; 1975 Jun; 24(6):1237-42. PubMed ID: 165264
    [No Abstract]   [Full Text] [Related]  

  • 17. Cyclic adenosine 3',5'-monophosphate in guinea pig cerebral cortical slices: possible regulation of phosphodiesterase activity by cyclic adenosine 3',5'-monophosphate and calcium ions.
    Schultz J
    J Neurochem; 1975 Mar; 24(3):495-501. PubMed ID: 163294
    [No Abstract]   [Full Text] [Related]  

  • 18. Absence of an effect of histamine, noradrenaline and depolarizing agents on the levels of adenosine 3', 5'-monophosphate in nerve endings isolated from cerebral cortex.
    De Belleroche JS; Das I; Bradford HF
    Biochem Pharmacol; 1974 Feb; 23(4):835-43. PubMed ID: 4363214
    [No Abstract]   [Full Text] [Related]  

  • 19. The effects of propranolol and electrical stimulation on the cyclic 3',5'-AMP content of isolated cerebral tissue.
    Somerville AR; Smith AA
    J Neurochem; 1972 Aug; 19(8):2003-6. PubMed ID: 4340138
    [No Abstract]   [Full Text] [Related]  

  • 20. Biochemical characterization of a filtered synaptoneurosome preparation from guinea pig cerebral cortex: cyclic adenosine 3':5'-monophosphate-generating systems, receptors, and enzymes.
    Hollingsworth EB; McNeal ET; Burton JL; Williams RJ; Daly JW; Creveling CR
    J Neurosci; 1985 Aug; 5(8):2240-53. PubMed ID: 2991484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.