These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 204306)

  • 41. Proton gradient linkage to active uptake of [3H]acetylcholine by Torpedo electric organ synaptic vesicles.
    Anderson DC; King SC; Parsons SM
    Biochemistry; 1982 Jun; 21(13):3037-43. PubMed ID: 6213263
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Acetylcholine translocation in synaptic vesicle ghosts in vitro.
    Suszkiw JB
    J Neurochem; 1976 Oct; 27(4):853-7. PubMed ID: 966020
    [No Abstract]   [Full Text] [Related]  

  • 43. Aspects of acetylcholine metabolism in the electric organ of Torpedo marmorata.
    Marchbanks RM; Israël M
    J Neurochem; 1971 Mar; 18(3):439-48. PubMed ID: 5559253
    [No Abstract]   [Full Text] [Related]  

  • 44. Phospholipid turnover in Torpedo marmorata electric organ during discharge in vivo.
    Bleasdale JE; Hawthorne JN; Widlund L; Heilbronn E
    Biochem J; 1976 Sep; 158(3):557-65. PubMed ID: 825114
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pharmacological characterization of the acetylcholine transport system in purified Torpedo electric organ synaptic vesicles.
    Anderson DC; King SC; Parsons SM
    Mol Pharmacol; 1983 Jul; 24(1):48-54. PubMed ID: 6865925
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Thiamine and cholinergic transmission in the electric organ of Torpedo. I. Cellular localization and functional changes of thiamine and thiamine phosphate esters.
    Eder L; Dunant Y
    J Neurochem; 1980 Dec; 35(6):1278-86. PubMed ID: 6255096
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Variations in the tissue levels of acetylcholine and adenosine triphosphate during stimulation of the Torpedo electric organ].
    Israël M; Lesbats B; Marsal J; Meunier FM
    C R Acad Hebd Seances Acad Sci D; 1975 Feb; 280(7):905-8. PubMed ID: 170011
    [No Abstract]   [Full Text] [Related]  

  • 48. Substructure and responses of cholinergic synaptic vesicles in the atomic force microscope.
    García RA; Laney DE; Parsons SM; Hansma HG
    J Neurosci Res; 1998 May; 52(3):350-5. PubMed ID: 9590443
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recycling of synaptic vesicles in the cholinergic synapses of the Torpedo electric organ during induced transmitter release.
    Zimmerman H; Denston CR
    Neuroscience; 1977; 2(5):695-714. PubMed ID: 22832
    [No Abstract]   [Full Text] [Related]  

  • 50. Saturable [D-Ala2, D-Leu5]-enkephalin transport into cholinergic synaptic vesicles.
    Day NC; Wien D; Michaelson DM
    FEBS Lett; 1985 Apr; 183(1):25-8. PubMed ID: 3884380
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The involvement of lysophosphoglycerides in neurotransmitter release; the composition and turnover of phospholipids of synaptic vesicles of guinea-pig cerebral cortex and Torpedo electric organ and the effect of stimulation.
    Baker RR; Dowdall MJ; Whittaker VP
    Brain Res; 1975 Dec; 100(3):629-44. PubMed ID: 129
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of a membrane protein from cholinergic synaptic vesicles isolated from the electric organ of Torpedo marmorata.
    Bock E; Heilbronn E; Widlund L
    Biochim Biophys Acta; 1979 Nov; 581(1):71-8. PubMed ID: 508796
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effect of neurotransmitter release upon phospholipid composition and fatty acid turnover in synaptic vesicles of Torpedo marmorata electric organ and guinea-pig cerebral cortex.
    Baker RR; Dowdall MJ; Whittaker VP
    Biochem Soc Trans; 1975; 3(2):263-5. PubMed ID: 236945
    [No Abstract]   [Full Text] [Related]  

  • 54. Vesicular storage and release of a false cholinergic transmitted (acetylpyrrolcholine) in the Torpedo electric organ.
    Zimmermann H; Dowdall MJ
    Neuroscience; 1977; 2(5):731-9. PubMed ID: 22833
    [No Abstract]   [Full Text] [Related]  

  • 55. On the mechanism of acetylcholine release.
    Dunant Y
    Prog Neurobiol; 1986; 26(1):55-92. PubMed ID: 3008214
    [No Abstract]   [Full Text] [Related]  

  • 56. Recycled synaptic vesicles contain vesicle but not plasma membrane marker, newly synthesized acetylcholine, and a sample of extracellular medium.
    Bonzelius F; Zimmermann H
    J Neurochem; 1990 Oct; 55(4):1266-73. PubMed ID: 2398359
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Proton NMR detection of acetylcholine status in synaptic vesicles.
    Stadler H; Füldner HH
    Nature; 1980 Jul; 286(5770):293-4. PubMed ID: 6250057
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Morphological and biochemical heterogeneity of cholinergic synaptic vesicles.
    Zimmermann H; Whittaker VP
    Nature; 1977 Jun; 267(5612):633-5. PubMed ID: 876386
    [No Abstract]   [Full Text] [Related]  

  • 59. Photoaffinity labeling of vesicular acetylcholine transporter from electric organ of Torpedo.
    Parsons SM; Rogers GA; Gracz LM
    Methods Enzymol; 1998; 296():99-116. PubMed ID: 9779443
    [No Abstract]   [Full Text] [Related]  

  • 60. Differences in the osmotic fragility of recycling and reserve synaptic vesicles from the cholinergic electromotor nerve terminals of Torpedo and their possible significance for vesicle recycling.
    Giompres PE; Whittaker VP
    Biochim Biophys Acta; 1984 Mar; 770(2):166-70. PubMed ID: 6696906
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.