BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 20430753)

  • 1. TAPIR, a web server for the prediction of plant microRNA targets, including target mimics.
    Bonnet E; He Y; Billiau K; Van de Peer Y
    Bioinformatics; 2010 Jun; 26(12):1566-8. PubMed ID: 20430753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. psRNATarget: a plant small RNA target analysis server.
    Dai X; Zhao PX
    Nucleic Acids Res; 2011 Jul; 39(Web Server issue):W155-9. PubMed ID: 21622958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Target-align: a tool for plant microRNA target identification.
    Xie F; Zhang B
    Bioinformatics; 2010 Dec; 26(23):3002-3. PubMed ID: 20934992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PsRobot: a web-based plant small RNA meta-analysis toolbox.
    Wu HJ; Ma YK; Chen T; Wang M; Wang XJ
    Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W22-8. PubMed ID: 22693224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SoMART: a web server for plant miRNA, tasiRNA and target gene analysis.
    Li F; Orban R; Baker B
    Plant J; 2012 Jun; 70(5):891-901. PubMed ID: 22268718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. sPARTA: a parallelized pipeline for integrated analysis of plant miRNA and cleaved mRNA data sets, including new miRNA target-identification software.
    Kakrana A; Hammond R; Patel P; Nakano M; Meyers BC
    Nucleic Acids Res; 2014 Oct; 42(18):e139. PubMed ID: 25120269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades.
    Friedländer MR; Mackowiak SD; Li N; Chen W; Rajewsky N
    Nucleic Acids Res; 2012 Jan; 40(1):37-52. PubMed ID: 21911355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of small RNAs in resistant melon cultivar against
    Mao JC; Yan M; Li JH; Yang JY; Wang HJ
    Front Microbiol; 2024; 15():1408926. PubMed ID: 38774502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Smi-miR858a-
    Zhu B; Wang M; Pang Y; Hu X; Sun C; Zhou H; Deng Y; Lu S
    Hortic Res; 2024 Apr; 11(4):uhae047. PubMed ID: 38706582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNAs from edible plants reach the human gastrointestinal tract and may act as potential regulators of gene expression.
    Díez-Sainz E; Milagro FI; Aranaz P; Riezu-Boj JI; Lorente-Cebrián S
    J Physiol Biochem; 2024 Apr; ():. PubMed ID: 38662188
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Srivastava A; Pandey V; Singh N; Marwal A; Shahid MS; Gaur RK
    Front Microbiol; 2024; 15():1340275. PubMed ID: 38605706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Argonaute and Dicer are essential for communication between
    Enriquez-Felix EE; Pérez-Salazar C; Rico-Ruiz JG; Calheiros de Carvalho A; Cruz-Morales P; Villalobos-Escobedo JM; Herrera-Estrella A
    Microbiol Spectr; 2024 Apr; 12(4):e0316523. PubMed ID: 38441469
    [No Abstract]   [Full Text] [Related]  

  • 13. Genome-wide identification, stress- and hormone-responsive expression characteristics, and regulatory pattern analysis of Scutellaria baicalensis SbSPLs.
    Wu JW; Zhao ZY; Hu RC; Huang YF
    Plant Mol Biol; 2024 Feb; 114(2):20. PubMed ID: 38363403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant miR8126-3p and miR8126-5p Decrease Lipid Accumulation through Modulation of Metabolic Genes in a Human Hepatocyte Model That Mimics Steatosis.
    Díez-Sainz E; Aranaz P; Amri EZ; Riezu-Boj JI; Lorente-Cebrián S; Milagro FI
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. miR482f and miR482c-5p from edible plant-derived foods inhibit the expression of pro-inflammatory genes in human THP-1 macrophages.
    Díez-Sainz E; Lorente-Cebrián S; Aranaz P; Amri EZ; Riezu-Boj JI; Milagro FI
    Front Nutr; 2023; 10():1287312. PubMed ID: 38099184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome and Metabolome Analyses Reveal Sugar and Acid Accumulation during Apricot Fruit Development.
    Gou N; Chen C; Huang M; Zhang Y; Bai H; Li H; Wang L; Wuyun T
    Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of the carrot miRNAome in response to salt stress.
    Szymonik K; Klimek-Chodacka M; Lukasiewicz A; Macko-Podgórni A; Grzebelus D; Baranski R
    Sci Rep; 2023 Dec; 13(1):21506. PubMed ID: 38057586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of miRNAs and their targets in two
    Liang C; Yan Y; Tan Y; Yang X; Cao J; Tang C; Liu K
    Front Plant Sci; 2023; 14():1287318. PubMed ID: 38023827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Identification and Comparative Analysis of Non-Coding RNAs in Spores and Mycelia of
    Lai T; Yu Q; Pan J; Wang J; Tang Z; Bai X; Shi L; Zhou T
    J Fungi (Basel); 2023 Oct; 9(10):. PubMed ID: 37888255
    [No Abstract]   [Full Text] [Related]  

  • 20. Species-specific microRNA discovery and target prediction in the soybean cyst nematode.
    Ajila V; Colley L; Ste-Croix DT; Nissan N; Cober ER; Mimee B; Samanfar B; Green JR
    Sci Rep; 2023 Oct; 13(1):17657. PubMed ID: 37848601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.