These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 2043076)

  • 1. A comparative study of masking fluids for excimer laser phototherapeutic keratectomy.
    Kornmehl EW; Steinert RF; Puliafito CA
    Arch Ophthalmol; 1991 Jun; 109(6):860-3. PubMed ID: 2043076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excimer laser smoothing of a reproducible model of anterior corneal surface irregularity.
    Fasano AP; Moreira H; McDonnell PJ; Sinbawy A
    Ophthalmology; 1991 Dec; 98(12):1782-5. PubMed ID: 1775310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of depth upon the smoothness of excimer laser corneal ablation.
    Taylor SM; Fields CR; Barker FM; Sanzo J
    Optom Vis Sci; 1994 Feb; 71(2):104-8. PubMed ID: 8152741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histological comparison of corneal ablation with Er:YAG laser, Nd:YAG optical parametric oscillator, and excimer laser.
    Telfair WB; Bekker C; Hoffman HJ; Yoder PR; Nordquist RE; Eiferman RA; Zenzie HH
    J Refract Surg; 2000; 16(1):40-50. PubMed ID: 10693618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smoothing of the ablated porcine anterior corneal surface using the Technolas Keracor 217C and Nidek EC-5000 excimer lasers.
    Lombardo M; Serrao S
    J Refract Surg; 2004; 20(5):450-3. PubMed ID: 15523956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ collagen gel mold as an aid in excimer laser superficial keratectomy.
    Englanoff JS; Kolahdouz-Isfahani AH; Moreira H; Cheung DT; Nimni ME; Trokel SL; McDonnell PJ
    Ophthalmology; 1992 Aug; 99(8):1201-8. PubMed ID: 1513572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of en face and tangential wide-area excimer surface ablation in the rabbit.
    Holme RJ; Fouraker BD; Schanzlin DJ
    Arch Ophthalmol; 1990 Jun; 108(6):876-81. PubMed ID: 2350291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excimer laser keratectomy for myopia with a rotating-slit delivery system.
    Hanna KD; Chastang JC; Pouliquen Y; Renard G; Asfar L; Waring GO
    Arch Ophthalmol; 1988 Feb; 106(2):245-50. PubMed ID: 3341982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultraviolet solid-state laser (213-nm) photorefractive keratectomy. In vitro study.
    Ren Q; Simon G; Parel JM
    Ophthalmology; 1993 Dec; 100(12):1828-34. PubMed ID: 8259282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superficial keratectomy with the 193 nm excimer laser: a reproducible model of corneal surface irregularities.
    Fitzsimmons TD; Fagerholm P
    Acta Ophthalmol (Copenh); 1991 Oct; 69(5):641-4. PubMed ID: 1776419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phototherapeutic Keratectomy: Science and Art.
    Wilson SE; Marino GK; Medeiros CS; Santhiago MR
    J Refract Surg; 2017 Mar; 33(3):203-210. PubMed ID: 28264136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A prospective multicenter trial of excimer laser phototherapeutic keratectomy for corneal vision loss. The Summit Phototherapeutic Keratectomy Study Group.
    Maloney RK; Thompson V; Ghiselli G; Durrie D; Waring GO; O'Connell M
    Am J Ophthalmol; 1996 Aug; 122(2):149-60. PubMed ID: 8694083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapidly polymerized collagen gel as a smoothing agent in excimer laser photoablation.
    DeVore DP; Scott JB; Nordquist RE; Hoffman RS; Nguyen H; Eiferman RA
    J Refract Surg; 1995; 11(1):50-5. PubMed ID: 7641050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The BioMask for treatment of corneal surface irregularities with excimer laser phototherapeutic keratectomy.
    Stevens SX; Bowyer BL; Sanchez-Thorin JC; Rocha G; Young DA; Rowsey JJ
    Cornea; 1999 Mar; 18(2):155-63. PubMed ID: 10090360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of excimer laser radiant exposure on uniformity of ablated corneal surface.
    Fantes FE; Waring GO
    Lasers Surg Med; 1989; 9(6):533-42. PubMed ID: 2601547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corneal surface morphology following excimer laser ablation with humidified gases.
    Krueger RR; Campos M; Wang XW; Lee M; McDonnell PJ
    Arch Ophthalmol; 1993 Aug; 111(8):1131-7. PubMed ID: 8352695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tangential corneal surface ablation with 193- and 308-nm excimer and 2936-nm erbium-YAG laser irradiation.
    Belgorod BM; Ediger MN; Weiblinger RP; Erlandson RA
    Arch Ophthalmol; 1992 Apr; 110(4):533-6. PubMed ID: 1562264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human excimer laser keratectomy. Clinical and histopathologic correlations.
    Binder PS; Anderson JA; Rock ME; Vrabec MP
    Ophthalmology; 1994 Jun; 101(6):979-89. PubMed ID: 8008363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface quality of excimer laser corneal ablation with different frequencies.
    Liang FQ; Ishikawa T; Kim J; del Cerro M; Park SB; Aquavella JV
    Cornea; 1993 Nov; 12(6):500-6. PubMed ID: 8261781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of 3 excimer laser ablation frequencies (200 Hz, 500 Hz, 1000 Hz) on the cornea using a 1000 Hz scanning-spot excimer laser.
    Khoramnia R; Lohmann CP; Wuellner C; Kobuch KA; Donitzky C; Winkler von Mohrenfels C
    J Cataract Refract Surg; 2010 Aug; 36(8):1385-91. PubMed ID: 20656164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.