BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 20430784)

  • 1. Regulation of tillering in sorghum: genotypic effects.
    Kim HK; Luquet D; van Oosterom E; Dingkuhn M; Hammer G
    Ann Bot; 2010 Jul; 106(1):69-78. PubMed ID: 20430784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of tillering in sorghum: environmental effects.
    Kim HK; van Oosterom E; Dingkuhn M; Luquet D; Hammer G
    Ann Bot; 2010 Jul; 106(1):57-67. PubMed ID: 20421230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A physiological framework to explain genetic and environmental regulation of tillering in sorghum.
    Alam MM; Hammer GL; van Oosterom EJ; Cruickshank AW; Hunt CH; Jordan DR
    New Phytol; 2014 Jul; 203(1):155-67. PubMed ID: 24665928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QTL analysis in multiple sorghum populations facilitates the dissection of the genetic and physiological control of tillering.
    Alam MM; Mace ES; van Oosterom EJ; Cruickshank A; Hunt CH; Hammer GL; Jordan DR
    Theor Appl Genet; 2014 Oct; 127(10):2253-66. PubMed ID: 25163934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tillering in grain sorghum over a wide range of population densities: identification of a common hierarchy for tiller emergence, leaf area development and fertility.
    Lafarge TA; Broad J; Hammer GL
    Ann Bot; 2002 Jul; 90(1):87-98. PubMed ID: 12125776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tillering in grain sorghum over a wiide range of population densities: modelling dynamics of tiller fertility.
    Lafarge TA; Hammer GL
    Ann Bot; 2002 Jul; 90(1):99-110. PubMed ID: 12125777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental and growth controls of tillering and water-soluble carbohydrate accumulation in contrasting wheat (Triticum aestivum L.) genotypes: can we dissect them?
    Dreccer MF; Chapman SC; Rattey AR; Neal J; Song Y; Christopher JJ; Reynolds M
    J Exp Bot; 2013 Jan; 64(1):143-60. PubMed ID: 23213136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Canopy architectural and physiological characterization of near-isogenic wheat lines differing in the tiller inhibition gene tin.
    Moeller C; Evers JB; Rebetzke G
    Front Plant Sci; 2014; 5():617. PubMed ID: 25520724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling tiller growth and mortality as a sink-driven process using Ecomeristem: implications for biomass sorghum ideotyping.
    Larue F; Fumey D; Rouan L; Soulié JC; Roques S; Beurier G; Luquet D
    Ann Bot; 2019 Oct; 124(4):675-690. PubMed ID: 30953443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome Profiling of Tiller Buds Provides New Insights into PhyB Regulation of Tillering and Indeterminate Growth in Sorghum.
    Kebrom TH; Mullet JE
    Plant Physiol; 2016 Apr; 170(4):2232-50. PubMed ID: 26893475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in temperature responses among phenological processes in diverse Ethiopian sorghum germplasm can affect their specific adaptation to environmental conditions.
    Tirfessa A; McLean G; Baker P; Mortlock M; Hammer G; van Oosterom E
    Ann Bot; 2023 Apr; 131(4):601-611. PubMed ID: 36661105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A tillering inhibition gene influences root-shoot carbon partitioning and pattern of water use to improve wheat productivity in rainfed environments.
    Hendriks PW; Kirkegaard JA; Lilley JM; Gregory PJ; Rebetzke GJ
    J Exp Bot; 2016 Jan; 67(1):327-40. PubMed ID: 26494729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorghum tiller bud growth is repressed by contact with the overlying leaf.
    Liu R; Finlayson SA
    Plant Cell Environ; 2019 Jul; 42(7):2120-2132. PubMed ID: 30875440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photosynthetic leaf area modulates tiller bud outgrowth in sorghum.
    Kebrom TH; Mullet JE
    Plant Cell Environ; 2015 Aug; 38(8):1471-8. PubMed ID: 25496467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. WALTer: a three-dimensional wheat model to study competition for light through the prediction of tillering dynamics.
    Lecarpentier C; Barillot R; Blanc E; Abichou M; Goldringer I; Barbillon P; Enjalbert J; Andrieu B
    Ann Bot; 2019 Jun; 123(6):961-975. PubMed ID: 30629113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic quantification of canopy structure to characterize early plant vigour in wheat genotypes.
    Duan T; Chapman SC; Holland E; Rebetzke GJ; Guo Y; Zheng B
    J Exp Bot; 2016 Aug; 67(15):4523-34. PubMed ID: 27312669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variability of phyllochron, plastochron and rate of increase in height in photoperiod-sensitive sorghum varieties.
    Clerget B; Dingkuhn M; Gozé E; Rattunde HF; Ney B
    Ann Bot; 2008 Mar; 101(4):579-94. PubMed ID: 18230624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of high-density genetic mapping with transcriptome analysis uncovers numerous agronomic QTL and reveals candidate genes for the control of tillering in sorghum.
    Govindarajulu R; Hostetler AN; Xiao Y; Chaluvadi SR; Mauro-Herrera M; Siddoway ML; Whipple C; Bennetzen JL; Devos KM; Doust AN; Hawkins JS
    G3 (Bethesda); 2021 Feb; 11(2):. PubMed ID: 33712819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development.
    Kebrom TH; Chandler PM; Swain SM; King RW; Richards RA; Spielmeyer W
    Plant Physiol; 2012 Sep; 160(1):308-18. PubMed ID: 22791303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Sorghum Reconstructions from Depth Images Identify QTL Regulating Shoot Architecture.
    McCormick RF; Truong SK; Mullet JE
    Plant Physiol; 2016 Oct; 172(2):823-834. PubMed ID: 27528244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.