These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 20431153)

  • 1. Fixed-parameter tractability of the maximum agreement supertree problem.
    Guillemot S; Berry V
    IEEE/ACM Trans Comput Biol Bioinform; 2010; 7(2):342-53. PubMed ID: 20431153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimum-flip supertrees: complexity and algorithms.
    Chen D; Eulenstein O; Fernandez-Baca D; Sanderson M
    IEEE/ACM Trans Comput Biol Bioinform; 2006; 3(2):165-73. PubMed ID: 17048402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient FPT Algorithms for (Strict) Compatibility of Unrooted Phylogenetic Trees.
    Baste J; Paul C; Sau I; Scornavacca C
    Bull Math Biol; 2017 Apr; 79(4):920-938. PubMed ID: 28247121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved parameterized complexity of the maximum agreement subtree and maximum compatible tree problems.
    Berry V; Nicolas F
    IEEE/ACM Trans Comput Biol Bioinform; 2006; 3(3):289-302. PubMed ID: 17048466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robustness of topological supertree methods for reconciling dense incompatible data.
    Willson SJ
    IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(1):62-75. PubMed ID: 19179699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast local search for unrooted Robinson-Foulds supertrees.
    Chaudhary R; Burleigh JG; Fernández-Baca D
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1004-13. PubMed ID: 22431553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the fixed parameter tractability of agreement-based phylogenetic distances.
    Bordewich M; Scornavacca C; Tokac N; Weller M
    J Math Biol; 2017 Jan; 74(1-2):239-257. PubMed ID: 27221239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Note on the Fixed Parameter Tractability of the Gene-Duplication Problem.
    Bansal MS; Shamir R
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(3):848-50. PubMed ID: 20733245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computing a smallest multilabeled phylogenetic tree from rooted triplets.
    Guillemot S; Jansson J; Sung WK
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(4):1141-7. PubMed ID: 20733243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstructing a SuperGeneTree minimizing reconciliation.
    Lafond M; Ouangraoua A; El-Mabrouk N
    BMC Bioinformatics; 2015; 16 Suppl 14(Suppl 14):S4. PubMed ID: 26451911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Refining phylogenetic trees given additional data: an algorithm based on parsimony.
    Wu T; Moulton V; Steel M
    IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(1):118-25. PubMed ID: 19179705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triplet supertree heuristics for the tree of life.
    Lin HT; Burleigh JG; Eulenstein O
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S8. PubMed ID: 19208181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Algorithms for efficient near-perfect phylogenetic tree reconstruction in theory and practice.
    Sridhar S; Dhamdhere K; Blelloch G; Halperin E; Ravi R; Schwartz R
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(4):561-71. PubMed ID: 17975268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. COSPEDTree: COuplet Supertree by Equivalence Partitioning of Taxa Set and DAG Formation.
    Bhattacharyya S; Mukherjee J
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(3):590-603. PubMed ID: 26357270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the elusiveness of clusters.
    Kelk SM; Scornavacca C; van Iersel L
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):517-34. PubMed ID: 21968961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A polynomial-time algorithm computing lower and upper bounds of the rooted subtree prune and regraft distance.
    Kannan L; Li H; Mushegian A
    J Comput Biol; 2011 May; 18(5):743-57. PubMed ID: 21166560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cubic time algorithms of amalgamating gene trees and building evolutionary scenarios.
    Lyubetsky VA; Rubanov LI; Rusin LY; Gorbunov KY
    Biol Direct; 2012 Dec; 7():48. PubMed ID: 23259766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene Tree Construction and Correction Using SuperTree and Reconciliation.
    Lafond M; Chauve C; El-Mabrouk N; Ouangraoua A
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(5):1560-1570. PubMed ID: 28678712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finding a most parsimonious or likely tree in a network with respect to an alignment.
    Kelk S; Pardi F; Scornavacca C; van Iersel L
    J Math Biol; 2019 Jan; 78(1-2):527-547. PubMed ID: 30121824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple fixed parameter tractable algorithm for computing the hybridization number of two (not necessarily binary) trees.
    Piovesan T; Kelk SM
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(1):18-25. PubMed ID: 23702540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.