These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 20431154)

  • 1. Modeling protein interacting groups by quasi-bicliques: complexity, algorithm, and application.
    Liu X; Li J; Wang L
    IEEE/ACM Trans Comput Biol Bioinform; 2010; 7(2):354-64. PubMed ID: 20431154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovering motif pairs at interaction sites from protein sequences on a proteome-wide scale.
    Li H; Li J; Wong L
    Bioinformatics; 2006 Apr; 22(8):989-96. PubMed ID: 16446278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A correlated motif approach for finding short linear motifs from protein interaction networks.
    Tan SH; Hugo W; Sung WK; Ng SK
    BMC Bioinformatics; 2006 Nov; 7():502. PubMed ID: 17107624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SLIDER: a generic metaheuristic for the discovery of correlated motifs in protein-protein interaction networks.
    Boyen P; Van Dyck D; Neven F; van Ham RC; van Dijk AD
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(5):1344-57. PubMed ID: 21282865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Cascade Random Forests Algorithm for Predicting Protein-Protein Interaction Sites.
    Wei ZS; Yang JY; Shen HB; Yu DJ
    IEEE Trans Nanobioscience; 2015 Oct; 14(7):746-60. PubMed ID: 26441427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of stable and significant binding motif pairs from PDB complexes and protein interaction datasets.
    Li H; Li J
    Bioinformatics; 2005 Feb; 21(3):314-24. PubMed ID: 15374856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finding linear motif pairs from protein interaction networks: a probabilistic approach.
    Leung HC; Siu MH; Yiu SM; Chin FY; Sung KW
    Comput Syst Bioinformatics Conf; 2007; 6():111-9. PubMed ID: 17951817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient estimation of graphlet frequency distributions in protein-protein interaction networks.
    Przulj N; Corneil DG; Jurisica I
    Bioinformatics; 2006 Apr; 22(8):974-80. PubMed ID: 16452112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring biological interaction networks with tailored weighted quasi-bicliques.
    Chang WC; Vakati S; Krause R; Eulenstein O
    BMC Bioinformatics; 2012 Jun; 13 Suppl 10(Suppl 10):S16. PubMed ID: 22759421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting protein-protein interactions using high-quality non-interacting pairs.
    Zhang L; Yu G; Guo M; Wang J
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):525. PubMed ID: 30598096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilizing shared interacting domain patterns and Gene Ontology information to improve protein-protein interaction prediction.
    Roslan R; Othman RM; Shah ZA; Kasim S; Asmuni H; Taliba J; Hassan R; Zakaria Z
    Comput Biol Med; 2010 Jun; 40(6):555-64. PubMed ID: 20417930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decomposing protein networks into domain-domain interactions.
    Albrecht M; Huthmacher C; Tosatto SC; Lengauer T
    Bioinformatics; 2005 Sep; 21 Suppl 2():ii220-1. PubMed ID: 16204107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. D-SLIMMER: domain-SLiM interaction motifs miner for sequence based protein-protein interaction data.
    Hugo W; Ng SK; Sung WK
    J Proteome Res; 2011 Dec; 10(12):5285-95. PubMed ID: 22004555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting protein-protein interactions based only on sequences information.
    Shen J; Zhang J; Luo X; Zhu W; Yu K; Chen K; Li Y; Jiang H
    Proc Natl Acad Sci U S A; 2007 Mar; 104(11):4337-41. PubMed ID: 17360525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clustering-based approach for predicting motif pairs from protein interaction data.
    Leung HC; Siu MH; Yiu SM; Chin FY; Sung KW
    J Bioinform Comput Biol; 2009 Aug; 7(4):701-16. PubMed ID: 19634199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicted binding site information improves model ranking in protein docking using experimental and computer-generated target structures.
    Maheshwari S; Brylinski M
    BMC Struct Biol; 2015 Nov; 15():23. PubMed ID: 26597230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CeFunMO: A centrality based method for discovering functional motifs with application in biological networks.
    Kouhsar M; Razaghi-Moghadam Z; Mousavian Z; Masoudi-Nejad A
    Comput Biol Med; 2016 Sep; 76():154-9. PubMed ID: 27454243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kernel methods for predicting protein-protein interactions.
    Ben-Hur A; Noble WS
    Bioinformatics; 2005 Jun; 21 Suppl 1():i38-46. PubMed ID: 15961482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulatory motif finding by logic regression.
    Keles S; van der Laan MJ; Vulpe C
    Bioinformatics; 2004 Nov; 20(16):2799-811. PubMed ID: 15166027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preferential use of protein domain pairs as interaction mediators: order and transitivity.
    Itzhaki Z; Akiva E; Margalit H
    Bioinformatics; 2010 Oct; 26(20):2564-70. PubMed ID: 20802208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.