These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 20431818)

  • 1. On-resin dimerization incorporates a diverse array of pi-conjugated functionality within aqueous self-assembling peptide backbones.
    Vadehra GS; Wall BD; Diegelmann SR; Tovar JD
    Chem Commun (Camb); 2010 Jun; 46(22):3947-9. PubMed ID: 20431818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variation of formal hydrogen-bonding networks within electronically delocalized π-conjugated oligopeptide nanostructures.
    Wall BD; Zhou Y; Mei S; Ardoña HA; Ferguson AL; Tovar JD
    Langmuir; 2014 Sep; 30(38):11375-85. PubMed ID: 25181015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-dimensional optoelectronic nanostructures derived from the aqueous self-assembly of pi-conjugated oligopeptides.
    Diegelmann SR; Gorham JM; Tovar JD
    J Am Chem Soc; 2008 Oct; 130(42):13840-1. PubMed ID: 18816116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoinduced Electron Transfer within Supramolecular Donor-Acceptor Peptide Nanostructures under Aqueous Conditions.
    Sanders AM; Magnanelli TJ; Bragg AE; Tovar JD
    J Am Chem Soc; 2016 Mar; 138(10):3362-70. PubMed ID: 26900714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing peptide based nanomaterials.
    Ulijn RV; Smith AM
    Chem Soc Rev; 2008 Apr; 37(4):664-75. PubMed ID: 18362975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coassembly of oppositely charged short peptides into well-defined supramolecular hydrogels.
    Xu XD; Chen CS; Lu B; Cheng SX; Zhang XZ; Zhuo RX
    J Phys Chem B; 2010 Feb; 114(7):2365-72. PubMed ID: 20166681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supramolecular structures of amyloid-related peptides in an ambient water nanofilm.
    Ye M; Zhang Y; Li H; Xie M; Hu J
    J Phys Chem B; 2010 Dec; 114(48):15759-65. PubMed ID: 21077660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controllable peptide-dendron self-assembly: interconversion of nanotubes and fibrillar nanostructures.
    Shao H; Parquette JR
    Angew Chem Int Ed Engl; 2009; 48(14):2525-8. PubMed ID: 19248060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly of multidomain peptides: balancing molecular frustration controls conformation and nanostructure.
    Dong H; Paramonov SE; Aulisa L; Bakota EL; Hartgerink JD
    J Am Chem Soc; 2007 Oct; 129(41):12468-72. PubMed ID: 17894489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supramolecular construction of optoelectronic biomaterials.
    Tovar JD
    Acc Chem Res; 2013 Jul; 46(7):1527-37. PubMed ID: 23477363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase diagram for assembly of biologically-active peptide amphiphiles.
    Tsonchev S; Niece KL; Schatz GC; Ratner MA; Stupp SI
    J Phys Chem B; 2008 Jan; 112(2):441-7. PubMed ID: 18088110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembly of nanofiber with uniform width from wheel-type trigonal-beta-sheet-forming peptide.
    Murasato K; Matsuura K; Kimizuka N
    Biomacromolecules; 2008 Mar; 9(3):913-8. PubMed ID: 18288799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-dimensional self-assembly of a rational designed beta-structure peptide.
    Wang C; Huang L; Wang L; Hong Y; Sha Y
    Biopolymers; 2007 May; 86(1):23-31. PubMed ID: 17216631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designer nanorings with functional cavities from self-assembling β-sheet peptides.
    Park IS; Yoon YR; Jung M; Kim K; Park S; Shin S; Lim YB; Lee M
    Chem Asian J; 2011 Feb; 6(2):452-8. PubMed ID: 20839276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical self-assembly of aminopyrazole peptides into nanorosettes in water.
    Rzepecki P; Hochdörffer K; Schaller T; Zienau J; Harms K; Ochsenfeld C; Xie X; Schrader T
    J Am Chem Soc; 2008 Jan; 130(2):586-91. PubMed ID: 18078338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural control of self-assembled nanofibers by artificial beta-sheet peptides composed of D- or L-isomer.
    Koga T; Matsuoka M; Higashi N
    J Am Chem Soc; 2005 Dec; 127(50):17596-7. PubMed ID: 16351076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural regulation of a peptide-conjugated graft copolymer: a simple model for amyloid formation.
    Koga T; Taguchi K; Kobuke Y; Kinoshita T; Higuchi M
    Chemistry; 2003 Mar; 9(5):1146-56. PubMed ID: 12596151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide alpha-helices for synthetic nanostructures.
    Ryadnov MG
    Biochem Soc Trans; 2007 Jun; 35(Pt 3):487-91. PubMed ID: 17511635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembling porphyrin-modified peptides.
    Dunetz JR; Sandstrom C; Young ER; Baker P; Van Name SA; Cathopolous T; Fairman R; de Paula JC; Akerfeldt KS
    Org Lett; 2005 Jun; 7(13):2559-61. PubMed ID: 15957890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature and pH effects on biophysical and morphological properties of self-assembling peptide RADA16-I.
    Ye Z; Zhang H; Luo H; Wang S; Zhou Q; DU X; Tang C; Chen L; Liu J; Shi YK; Zhang EY; Ellis-Behnke R; Zhao X
    J Pept Sci; 2008 Feb; 14(2):152-62. PubMed ID: 18196533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.