These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 20431889)

  • 21. Phytochrome-dependent photomovement responses mediated by phototropin family proteins in cryptogam plants.
    Suetsugu N; Wada M
    Photochem Photobiol; 2007; 83(1):87-93. PubMed ID: 16542113
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Leaves of isoprene-emitting tobacco plants maintain PSII stability at high temperatures.
    Pollastri S; Jorba I; Hawkins TJ; Llusià J; Michelozzi M; Navajas D; Peñuelas J; Hussey PJ; Knight MR; Loreto F
    New Phytol; 2019 Aug; 223(3):1307-1318. PubMed ID: 30980545
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 'Senescence-associated vacuoles' are involved in the degradation of chloroplast proteins in tobacco leaves.
    Martínez DE; Costa ML; Gomez FM; Otegui MS; Guiamet JJ
    Plant J; 2008 Oct; 56(2):196-206. PubMed ID: 18564383
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heat sensitivity of photosynthetic electron transport varies during the day due to changes in sugars and osmotic potential.
    Hüve K; Bichele I; Tobias M; Niinemets U
    Plant Cell Environ; 2006 Feb; 29(2):212-28. PubMed ID: 17080637
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Imaging of NPQ and ROS formation in tobacco leaves: heat inactivation of the water-water cycle prevents down-regulation of PSII.
    Hideg E; Kós PB; Schreiber U
    Plant Cell Physiol; 2008 Dec; 49(12):1879-86. PubMed ID: 18987066
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants.
    Tan W; Meng Qw; Brestic M; Olsovska K; Yang X
    J Plant Physiol; 2011 Nov; 168(17):2063-71. PubMed ID: 21803445
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo.
    Bernacchi CJ; Portis AR; Nakano H; von Caemmerer S; Long SP
    Plant Physiol; 2002 Dec; 130(4):1992-8. PubMed ID: 12481082
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Non-invasive, whole-plant imaging of chloroplast movement and chlorophyll fluorescence reveals photosynthetic phenotypes independent of chloroplast photorelocation defects in chloroplast division mutants.
    Dutta S; Cruz JA; Jiao Y; Chen J; Kramer DM; Osteryoung KW
    Plant J; 2015 Oct; 84(2):428-42. PubMed ID: 26332826
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Light acclimation of shade-tolerant and sun-resistant Tradescantia species: photochemical activity of PSII and its sensitivity to heat treatment.
    Benkov MA; Yatsenko AM; Tikhonov AN
    Photosynth Res; 2019 Mar; 139(1-3):203-214. PubMed ID: 29926255
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photoprotective function of chloroplast avoidance movement: in vivo chlorophyll fluorescence study.
    Sztatelman O; Waloszek A; Banaś AK; Gabryś H
    J Plant Physiol; 2010 Jun; 167(9):709-16. PubMed ID: 20172619
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Partitioning of absorbed light energy within photosystem II in barley can be affected by chloroplast movement.
    Semer J; Štroch M; Špunda V; Navrátil M
    J Photochem Photobiol B; 2018 Sep; 186():98-106. PubMed ID: 30025290
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electron flow to photosystem I from stromal reductants in vivo: the size of the pool of stromal reductants controls the rate of electron donation to both rapidly and slowly reducing photosystem I units.
    Bukhov N; Egorova E; Carpentier R
    Planta; 2002 Sep; 215(5):812-20. PubMed ID: 12244447
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Loss of alpha-tocopherol in tobacco plants with decreased geranylgeranyl reductase activity does not modify photosynthesis in optimal growth conditions but increases sensitivity to high-light stress.
    Grasses T; Grimm B; Koroleva O; Jahns P
    Planta; 2001 Aug; 213(4):620-8. PubMed ID: 11556795
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chlorophyll fluorescence analysis revealed essential roles of FtsH11 protease in regulation of the adaptive responses of photosynthetic systems to high temperature.
    Chen J; Burke JJ; Xin Z
    BMC Plant Biol; 2018 Jan; 18(1):11. PubMed ID: 29320985
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rice chloroplast-localized heat shock protein 70, OsHsp70CP1, is essential for chloroplast development under high-temperature conditions.
    Kim SR; An G
    J Plant Physiol; 2013 Jun; 170(9):854-63. PubMed ID: 23394789
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extra-plastidial degradation of chlorophyll and photosystem I in tobacco leaves involving 'senescence-associated vacuoles'.
    Gomez FM; Carrión CA; Costa ML; Desel C; Kieselbach T; Funk C; Krupinska K; Guiamet J
    Plant J; 2019 Aug; 99(3):465-477. PubMed ID: 30985038
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cytokinins in tobacco and wheat chloroplasts. Occurrence and changes due to light/dark treatment.
    Benková E; Witters E; Van Dongen W; Kolár J; Motyka V; Brzobohatý B; Van Onckelen HA; Machácková I
    Plant Physiol; 1999 Sep; 121(1):245-52. PubMed ID: 10482680
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced cold tolerance in transgenic tobacco expressing a chloroplast omega-3 fatty acid desaturase gene under the control of a cold-inducible promoter.
    Khodakovskaya M; McAvoy R; Peters J; Wu H; Li Y
    Planta; 2006 Apr; 223(5):1090-100. PubMed ID: 16292565
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rethinking the Influence of Chloroplast Movements on Non-photochemical Quenching and Photoprotection.
    Wilson S; Ruban AV
    Plant Physiol; 2020 Jul; 183(3):1213-1223. PubMed ID: 32404415
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Myosin inhibitors block accumulation movement of chloroplasts in Arabidopsis thaliana leaf cells.
    Paves H; Truve E
    Protoplasma; 2007; 230(3-4):165-9. PubMed ID: 17458631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.