BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 20432412)

  • 1. Synthesis of benzaldehyde-functionalized glycans: a novel approach towards glyco-SAMs as a tool for surface plasmon resonance studies.
    Kopitzki S; Jensen KJ; Thiem J
    Chemistry; 2010 Jun; 16(23):7017-29. PubMed ID: 20432412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface plasmon resonance imaging studies of protein-carbohydrate interactions.
    Smith EA; Thomas WD; Kiessling LL; Corn RM
    J Am Chem Soc; 2003 May; 125(20):6140-8. PubMed ID: 12785845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of concanavalin a to a monosaccharide functionalized self-assembled monolayer.
    Yonzon CR; Jeoung E; Zou S; Schatz GC; Mrksich M; Van Duyne RP
    J Am Chem Soc; 2004 Oct; 126(39):12669-76. PubMed ID: 15453801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization of carbohydrate epitopes for surface plasmon resonance using the Staudinger ligation.
    Loka RS; Cairo CW
    Carbohydr Res; 2010 Dec; 345(18):2641-7. PubMed ID: 20971453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile and rapid direct gold surface immobilization with controlled orientation for carbohydrates.
    Seo JH; Adachi K; Lee BK; Kang DG; Kim YK; Kim KR; Lee HY; Kawai T; Cha HJ
    Bioconjug Chem; 2007; 18(6):2197-201. PubMed ID: 17915957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilization and clustering of structurally defined oligosaccharides for sugar chips: an improved method for surface plasmon resonance analysis of protein-carbohydrate interactions.
    Suda Y; Arano A; Fukui Y; Koshida S; Wakao M; Nishimura T; Kusumoto S; Sobel M
    Bioconjug Chem; 2006; 17(5):1125-35. PubMed ID: 16984119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbohydrate-protein interactions by "clicked" carbohydrate self-assembled monolayers.
    Zhang Y; Luo S; Tang Y; Yu L; Hou KY; Cheng JP; Zeng X; Wang PG
    Anal Chem; 2006 Mar; 78(6):2001-8. PubMed ID: 16536439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SPR studies of carbohydrate-lectin interactions as useful tool for screening on lectin sources.
    Vornholt W; Hartmann M; Keusgen M
    Biosens Bioelectron; 2007 Jun; 22(12):2983-8. PubMed ID: 17261364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycan tagging to produce bioactive ligands for a surface plasmon resonance study via immobilization on different surfaces.
    Muñoz FJ; Pérez J; Rumbero A; Santos JI; Cañada FJ; André S; Gabius HJ; Jiménez-Barbero J; Sinisterra JV; Hernáiz MJ
    Bioconjug Chem; 2009 Apr; 20(4):673-82. PubMed ID: 19267474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promotion of sugar-lectin recognition through the multiple sugar presentation offered by regioselectively addressable functionalized templates (RAFT): a QCM-D and SPR study.
    Wilczewski M; Van der Heyden A; Renaudet O; Dumy P; Coche-Guérente L; Labbé P
    Org Biomol Chem; 2008 Mar; 6(6):1114-22. PubMed ID: 18327340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Versatile strategy for the synthesis of biotin-labelled glycans, their immobilization to establish a bioactive surface and interaction studies with a lectin on a biochip.
    Muñoz FJ; Rumbero A; Sinisterra JV; Santos JI; André S; Gabius HJ; Jiménez-Barbero J; Hernáiz MJ
    Glycoconj J; 2008 Oct; 25(7):633-46. PubMed ID: 18347977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple approach to well-defined sugar-coated surfaces for interaction studies.
    Vila-Perelló M; Gutiérrez Gallego R; Andreu D
    Chembiochem; 2005 Oct; 6(10):1831-8. PubMed ID: 16142819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of carbohydrate-protein interactions using glycan microarrays: determination of surface and solution dissociation constants.
    Liang PH; Wang SK; Wong CH
    J Am Chem Soc; 2007 Sep; 129(36):11177-84. PubMed ID: 17705486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-step biotinylation procedure for carbohydrates to study carbohydrate-protein interactions.
    Grün CH; van Vliet SJ; Schiphorst WE; Bank CM; Meyer S; van Die I; van Kooyk Y
    Anal Biochem; 2006 Jul; 354(1):54-63. PubMed ID: 16713984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface plasmon resonance as a tool to characterize lectin-carbohydrate interactions.
    Shinohara Y; Furukawa J
    Methods Mol Biol; 2014; 1200():185-205. PubMed ID: 25117236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic glycosylation, inhibitor design, and synthesis and formation of glyco-self assembled monolayers for simulation of recognition.
    Scheppokat AM; Gerber A; Schroven A; Meinke S; Kopitzki S; Beketow E; Thimm J; Thiem J
    Eur J Cell Biol; 2010 Jan; 89(1):39-52. PubMed ID: 20042251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beyond carbohydrate binding: new directions in plant lectin research.
    Komath SS; Kavitha M; Swamy MJ
    Org Biomol Chem; 2006 Mar; 4(6):973-88. PubMed ID: 16525538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functionalized self-assembled monolayers for measuring single molecule lectin carbohydrate interactions.
    Zhang X; Yadavalli VK
    Anal Chim Acta; 2009 Sep; 649(1):1-7. PubMed ID: 19664457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbohydrate-lectin interactions assayed by SPR.
    Duverger E; Lamerant-Fayel N; Frison N; Monsigny M
    Methods Mol Biol; 2010; 627():157-78. PubMed ID: 20217620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence-defined glycopolymer segments presenting mannose: synthesis and lectin binding affinity.
    Ponader D; Wojcik F; Beceren-Braun F; Dernedde J; Hartmann L
    Biomacromolecules; 2012 Jun; 13(6):1845-52. PubMed ID: 22483345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.