These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 204328)
1. Evidence for the participation of a Ca2+-dependent protein kinase and a protein phosphatase in the regulation of the Ca2+ transport ATPase of the sarcoplasmic reticulum. 1. Effect of inhibitors of the Ca2+-dependent protein kinase and protein phosphatase. Hörl WH; Jennissen HP; Heilmeyer LM Biochemistry; 1978 Mar; 17(5):759-66. PubMed ID: 204328 [No Abstract] [Full Text] [Related]
2. Evidence for the participation of a Ca2+-dependent protein kinase and protein phosphatase in the regulation of the Ca2+ transport ATPase of the sarcoplasmic reticulum. 2. Effect of phosphorylase kinase and phosphorylase phosphatase. Hörl WH; Heilmeyer LM Biochemistry; 1978 Mar; 17(5):766-72. PubMed ID: 204329 [No Abstract] [Full Text] [Related]
3. Effect of a Ca2+ dependent protein kinase and a protein phosphatase on the Ca2+ -phosphate transport ATPase. Hörl WH; Heilmeyer LM Adv Exp Med Biol; 1977; 81():385-94. PubMed ID: 197823 [No Abstract] [Full Text] [Related]
5. Mg2+ and Mn2+ modulation of Ca2+ transport and ATPase activity in sarcoplasmic reticulum vesicles. Chiesi M; Inesi G Arch Biochem Biophys; 1981 May; 208(2):586-92. PubMed ID: 6455090 [No Abstract] [Full Text] [Related]
6. The effect of ionomycin on calcium fluxes in sarcoplasmic reticulum vesicles and liposomes. Beeler TJ; Jona I; Martonosi A J Biol Chem; 1979 Jul; 254(14):6229-31. PubMed ID: 156184 [TBL] [Abstract][Full Text] [Related]
7. Effects of ruthenium red on Ca2+ uptake and ATPase of sarcoplasmic reticulum of rabbit skeletal muscle. Vale MG; Carvalho AP Biochim Biophys Acta; 1973 Oct; 325(1):29-37. PubMed ID: 4272356 [No Abstract] [Full Text] [Related]
8. Use of cryostat sections for measurement of Ca2+ uptake by sarcoplasmic reticulum. Mabuchi K; Sréter FA Anal Biochem; 1978 Jun; 86(2):733-42. PubMed ID: 148852 [No Abstract] [Full Text] [Related]
9. Electrogenicity of Ca2+ transport catalyzed by the Ca2+-ATPase from sarcoplasmic reticulum. Zimniak P; Racker E J Biol Chem; 1978 Jul; 253(13):4631-7. PubMed ID: 149132 [No Abstract] [Full Text] [Related]
10. Ca2+ regulation of conformational states in the transport cycle of spin-labeled sarcoplasmic reticulum ATPase. Coan C; Verjovski-Almeida S; Inesi G J Biol Chem; 1979 Apr; 254(8):2968-74. PubMed ID: 218959 [No Abstract] [Full Text] [Related]
11. The effect of halothane on the stability of Ca2+ transport activity of isolated fragmented sarcoplasmic reticulum. Diamond EM; Berman MC Biochem Pharmacol; 1980 Feb; 29(3):375-81. PubMed ID: 6444817 [No Abstract] [Full Text] [Related]
12. The phosphorylation of the membranal protein of the sarcoplasmic vesicles during active calcium transport. Makinose M Eur J Biochem; 1969 Aug; 10(1):74-82. PubMed ID: 4242109 [No Abstract] [Full Text] [Related]
13. ATPase phosphorylation and calcium ion translocation in the transient state of sarcoplasmic reticulum activity. Inesi G; Kurzmack M; Verjovski-Almeida S Ann N Y Acad Sci; 1978 Apr; 307():224-7. PubMed ID: 152088 [No Abstract] [Full Text] [Related]
14. Effect of X-537A- on the phosphorylated protein in sarcoplasmic reticulum vesicles. Osório e Castro VR; Vale MG; Carvalho AP Experientia; 1976 Apr; 32(4):424-6. PubMed ID: 131696 [TBL] [Abstract][Full Text] [Related]
15. AIF4-induced inhibition of the ATPase activity, the Ca2+-transport activity and the phosphoprotein-intermediate formation of plasma-membrane and endo(sarco)plasmic-reticulum Ca2+-transport ATPases in different tissues. Evidence for a tissue-dependent functional difference. Missiaen L; Wuytack F; De Smedt H; Amant F; Casteels R Biochem J; 1989 Jul; 261(2):655-60. PubMed ID: 2528347 [TBL] [Abstract][Full Text] [Related]
16. Determination of calcium transport and phosphoprotein phosphatase activity in microsomes from respiratory and vascular smooth muscle. Sands H; Mascali J; Paietta E Biochim Biophys Acta; 1977 Dec; 500(2):223-34. PubMed ID: 201293 [TBL] [Abstract][Full Text] [Related]
17. Glycogen phosphorolysis can form a metabolic shuttle to support Ca2+ uptake by sarcoplasmic reticulum membranes in skeletal muscle. Cuenda A; Nogues M; Gutiérrez-Merino C; de Meis L Biochem Biophys Res Commun; 1993 Nov; 196(3):1127-32. PubMed ID: 8250871 [TBL] [Abstract][Full Text] [Related]
18. Control of calcium transport in the myocardium by the cyclic AMP-Protein kinase system. Katz AM; Tada M; Kirchberger MA Adv Cyclic Nucleotide Res; 1975; 5():453-72. PubMed ID: 165680 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of Ca2+ uptake into fragmented sarcoplasmic reticulum by antibodies against purified Ca2+, Mg2+-dependent ATPase. Sumida M; Sasaki S J Biochem; 1975 Oct; 78(4):757-62. PubMed ID: 55412 [TBL] [Abstract][Full Text] [Related]
20. Uncoupling of fragmented sarcoplasmic reticulum's calcium uptake and extra ATPase activity found in the absence of oxalate. McFarland BH; Chan SI Life Sci II; 1973 May; 12(9):385-93. PubMed ID: 4267024 [No Abstract] [Full Text] [Related] [Next] [New Search]