BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 204328)

  • 1. Evidence for the participation of a Ca2+-dependent protein kinase and a protein phosphatase in the regulation of the Ca2+ transport ATPase of the sarcoplasmic reticulum. 1. Effect of inhibitors of the Ca2+-dependent protein kinase and protein phosphatase.
    Hörl WH; Jennissen HP; Heilmeyer LM
    Biochemistry; 1978 Mar; 17(5):759-66. PubMed ID: 204328
    [No Abstract]   [Full Text] [Related]  

  • 2. Evidence for the participation of a Ca2+-dependent protein kinase and protein phosphatase in the regulation of the Ca2+ transport ATPase of the sarcoplasmic reticulum. 2. Effect of phosphorylase kinase and phosphorylase phosphatase.
    Hörl WH; Heilmeyer LM
    Biochemistry; 1978 Mar; 17(5):766-72. PubMed ID: 204329
    [No Abstract]   [Full Text] [Related]  

  • 3. Effect of a Ca2+ dependent protein kinase and a protein phosphatase on the Ca2+ -phosphate transport ATPase.
    Hörl WH; Heilmeyer LM
    Adv Exp Med Biol; 1977; 81():385-94. PubMed ID: 197823
    [No Abstract]   [Full Text] [Related]  

  • 4. Cyclic AMP stimulation of membrane phosphorylation and Ca2+-activated, Mg2+-dependent ATPase in cardiac sarcoplasmic reticulum.
    Wray HL; Gray RR
    Biochim Biophys Acta; 1977 Sep; 461(3):441-59. PubMed ID: 197994
    [No Abstract]   [Full Text] [Related]  

  • 5. Mg2+ and Mn2+ modulation of Ca2+ transport and ATPase activity in sarcoplasmic reticulum vesicles.
    Chiesi M; Inesi G
    Arch Biochem Biophys; 1981 May; 208(2):586-92. PubMed ID: 6455090
    [No Abstract]   [Full Text] [Related]  

  • 6. The effect of ionomycin on calcium fluxes in sarcoplasmic reticulum vesicles and liposomes.
    Beeler TJ; Jona I; Martonosi A
    J Biol Chem; 1979 Jul; 254(14):6229-31. PubMed ID: 156184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of ruthenium red on Ca2+ uptake and ATPase of sarcoplasmic reticulum of rabbit skeletal muscle.
    Vale MG; Carvalho AP
    Biochim Biophys Acta; 1973 Oct; 325(1):29-37. PubMed ID: 4272356
    [No Abstract]   [Full Text] [Related]  

  • 8. Use of cryostat sections for measurement of Ca2+ uptake by sarcoplasmic reticulum.
    Mabuchi K; Sréter FA
    Anal Biochem; 1978 Jun; 86(2):733-42. PubMed ID: 148852
    [No Abstract]   [Full Text] [Related]  

  • 9. Electrogenicity of Ca2+ transport catalyzed by the Ca2+-ATPase from sarcoplasmic reticulum.
    Zimniak P; Racker E
    J Biol Chem; 1978 Jul; 253(13):4631-7. PubMed ID: 149132
    [No Abstract]   [Full Text] [Related]  

  • 10. Ca2+ regulation of conformational states in the transport cycle of spin-labeled sarcoplasmic reticulum ATPase.
    Coan C; Verjovski-Almeida S; Inesi G
    J Biol Chem; 1979 Apr; 254(8):2968-74. PubMed ID: 218959
    [No Abstract]   [Full Text] [Related]  

  • 11. The effect of halothane on the stability of Ca2+ transport activity of isolated fragmented sarcoplasmic reticulum.
    Diamond EM; Berman MC
    Biochem Pharmacol; 1980 Feb; 29(3):375-81. PubMed ID: 6444817
    [No Abstract]   [Full Text] [Related]  

  • 12. The phosphorylation of the membranal protein of the sarcoplasmic vesicles during active calcium transport.
    Makinose M
    Eur J Biochem; 1969 Aug; 10(1):74-82. PubMed ID: 4242109
    [No Abstract]   [Full Text] [Related]  

  • 13. ATPase phosphorylation and calcium ion translocation in the transient state of sarcoplasmic reticulum activity.
    Inesi G; Kurzmack M; Verjovski-Almeida S
    Ann N Y Acad Sci; 1978 Apr; 307():224-7. PubMed ID: 152088
    [No Abstract]   [Full Text] [Related]  

  • 14. Effect of X-537A- on the phosphorylated protein in sarcoplasmic reticulum vesicles.
    Osório e Castro VR; Vale MG; Carvalho AP
    Experientia; 1976 Apr; 32(4):424-6. PubMed ID: 131696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AIF4-induced inhibition of the ATPase activity, the Ca2+-transport activity and the phosphoprotein-intermediate formation of plasma-membrane and endo(sarco)plasmic-reticulum Ca2+-transport ATPases in different tissues. Evidence for a tissue-dependent functional difference.
    Missiaen L; Wuytack F; De Smedt H; Amant F; Casteels R
    Biochem J; 1989 Jul; 261(2):655-60. PubMed ID: 2528347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of calcium transport and phosphoprotein phosphatase activity in microsomes from respiratory and vascular smooth muscle.
    Sands H; Mascali J; Paietta E
    Biochim Biophys Acta; 1977 Dec; 500(2):223-34. PubMed ID: 201293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycogen phosphorolysis can form a metabolic shuttle to support Ca2+ uptake by sarcoplasmic reticulum membranes in skeletal muscle.
    Cuenda A; Nogues M; Gutiérrez-Merino C; de Meis L
    Biochem Biophys Res Commun; 1993 Nov; 196(3):1127-32. PubMed ID: 8250871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of calcium transport in the myocardium by the cyclic AMP-Protein kinase system.
    Katz AM; Tada M; Kirchberger MA
    Adv Cyclic Nucleotide Res; 1975; 5():453-72. PubMed ID: 165680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of Ca2+ uptake into fragmented sarcoplasmic reticulum by antibodies against purified Ca2+, Mg2+-dependent ATPase.
    Sumida M; Sasaki S
    J Biochem; 1975 Oct; 78(4):757-62. PubMed ID: 55412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncoupling of fragmented sarcoplasmic reticulum's calcium uptake and extra ATPase activity found in the absence of oxalate.
    McFarland BH; Chan SI
    Life Sci II; 1973 May; 12(9):385-93. PubMed ID: 4267024
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.