These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
46. Effect of nitric oxide and prostaglandins on renal function in insulin-resistant hypertensive dogs. Martínez FJ; Villa E; García-Robles R; Romero JC J Hypertens Suppl; 1993 Dec; 11(5):S138-9. PubMed ID: 8158314 [No Abstract] [Full Text] [Related]
47. Effect of L-NG-nitro-arginine, inhibitor of nitric oxide synthesis, on autoregulation of renal blood flow in dogs. Kiyomoto H; Matsuo H; Tamaki T; Aki Y; Hong H; Iwao H; Abe Y Jpn J Pharmacol; 1992 Feb; 58(2):147-55. PubMed ID: 1507520 [TBL] [Abstract][Full Text] [Related]
48. Glomerular and tubular interactions between renal adrenergic activity and nitric oxide. Gabbai FB; Thomson SC; Peterson O; Wead L; Malvey K; Blantz RC Am J Physiol; 1995 Jun; 268(6 Pt 2):F1004-8. PubMed ID: 7611442 [TBL] [Abstract][Full Text] [Related]
49. Suppression of blood flow autoregulation plateau during nitric oxide blockade in canine kidney. Majid DS; Navar LG Am J Physiol; 1992 Jan; 262(1 Pt 2):F40-6. PubMed ID: 1733296 [TBL] [Abstract][Full Text] [Related]
50. Effect on renin release of inhibiting renal nitric oxide synthesis in anaesthetized dogs. Naess PA; Christensen G; Kirkebøen KA; Kiil F Acta Physiol Scand; 1993 Jun; 148(2):137-42. PubMed ID: 8352025 [TBL] [Abstract][Full Text] [Related]
51. Bradykinin may be involved in neuropeptide Y-induced diuresis, natriuresis, and calciuresis. Bischoff A; Rascher W; Michel MC Am J Physiol; 1998 Oct; 275(4):F502-9. PubMed ID: 9755121 [TBL] [Abstract][Full Text] [Related]
52. Comparison of the vasodilatory effects of bradykinin in isolated dog renal arteries and in buffer-perfused dog kidneys. Malomvölgyi B; Hadházy P; Tekes K; Koltai MZ; Pogátsa G Acta Physiol Hung; 1996; 84(1):9-18. PubMed ID: 8993670 [TBL] [Abstract][Full Text] [Related]
54. Nitric oxide synthesised from L-arginine mediates endothelium dependent dilatation in human veins in vivo. Vallance P; Collier J; Moncada S Cardiovasc Res; 1989 Dec; 23(12):1053-7. PubMed ID: 2620324 [TBL] [Abstract][Full Text] [Related]
55. Role of endothelium-derived nitric oxide in hemodynamic adaptations after graded renal mass reduction. Griffin KA; Bidani AK; Ouyang J; Ellis V; Churchill M; Churchill PC Am J Physiol; 1993 Jun; 264(6 Pt 2):R1254-9. PubMed ID: 8322982 [TBL] [Abstract][Full Text] [Related]
56. Kinin actions on renal papillary blood flow and sodium excretion. Mattson DL; Cowley AW Hypertension; 1993 Jun; 21(6 Pt 2):961-5. PubMed ID: 8505107 [TBL] [Abstract][Full Text] [Related]
57. Response of fetal rabbit ductus arteriosus to bradykinin: role of nitric oxide, prostaglandins, and bradykinin receptors. Bateson EA; Schulz R; Olley PM Pediatr Res; 1999 Apr; 45(4 Pt 1):568-74. PubMed ID: 10203150 [TBL] [Abstract][Full Text] [Related]
58. Physiological role of nitric oxide in regulation of renal function in humans. Haynes WG; Hand MF; Dockrell ME; Eadington DW; Lee MR; Hussein Z; Benjamin N; Webb DJ Am J Physiol; 1997 Mar; 272(3 Pt 2):F364-71. PubMed ID: 9087680 [TBL] [Abstract][Full Text] [Related]
59. Inhibition of intrarenal NO stimulates renin secretion through a macula densa-mediated mechanism. Schnackenberg CG; Tabor BL; Strong MH; Granger JP Am J Physiol; 1997 Mar; 272(3 Pt 2):R879-86. PubMed ID: 9087651 [TBL] [Abstract][Full Text] [Related]
60. Nitric oxide does not mediate flow induced endothelium dependent arterial dilatation in the cat. Melkumyants AM; Balashov SA; Klimachev AN; Kartamyshev SP; Khayutin VM Cardiovasc Res; 1992 Mar; 26(3):256-60. PubMed ID: 1423421 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]