BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 20433133)

  • 1. Enthalpic studies of xyloglucan-cellulose interactions.
    Lopez M; Bizot H; Chambat G; Marais MF; Zykwinska A; Ralet MC; Driguez H; Buléon A
    Biomacromolecules; 2010 Jun; 11(6):1417-28. PubMed ID: 20433133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid-state 13C NMR study of a composite of tobacco xyloglucan and Gluconacetobacter xylinus cellulose: molecular interactions between the component polysaccharides.
    Bootten TJ; Harris PJ; Melton LD; Newman RH
    Biomacromolecules; 2009 Nov; 10(11):2961-7. PubMed ID: 19817435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The xyloglucan-cellulose assembly at the atomic scale.
    Hanus J; Mazeau K
    Biopolymers; 2006 May; 82(1):59-73. PubMed ID: 16453275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The adsorption of xyloglucan on cellulose: effects of explicit water and side chain variation.
    Zhang Q; Brumer H; Ågren H; Tu Y
    Carbohydr Res; 2011 Nov; 346(16):2595-602. PubMed ID: 21974911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xyloglucan-cellulose interaction depends on the sidechains and molecular weight of xyloglucan.
    Lima DU; Loh W; Buckeridge MS
    Plant Physiol Biochem; 2004 May; 42(5):389-94. PubMed ID: 15191741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Property evaluations of dry-cast reconstituted bacterial cellulose/tamarind xyloglucan biocomposites.
    de Souza CF; Lucyszyn N; Woehl MA; Riegel-Vidotti IC; Borsali R; Sierakowski MR
    Carbohydr Polym; 2013 Mar; 93(1):144-53. PubMed ID: 23465913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physico chemical properties of aminated tamarind xyloglucan.
    Simi CK; Abraham TE
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):513-20. PubMed ID: 20817420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of arabinoxylan and (1,3)(1,4)-β-glucan with cellulose networks.
    Mikkelsen D; Flanagan BM; Wilson SM; Bacic A; Gidley MJ
    Biomacromolecules; 2015 Apr; 16(4):1232-9. PubMed ID: 25756836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring architecture of xyloglucan cellulose nanocrystal complexes through enzyme susceptibility at different adsorption regimes.
    Dammak A; Quémener B; Bonnin E; Alvarado C; Bouchet B; Villares A; Moreau C; Cathala B
    Biomacromolecules; 2015 Feb; 16(2):589-96. PubMed ID: 25539015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elaboration of spin-coated cellulose-xyloglucan multilayered thin films.
    Cerclier C; Cousin F; Bizot H; Moreau C; Cathala B
    Langmuir; 2010 Nov; 26(22):17248-55. PubMed ID: 20882954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of plant cell wall matrix polysaccharides on bacterial cellulose structure studied with vibrational sum frequency generation spectroscopy and X-ray diffraction.
    Park YB; Lee CM; Kafle K; Park S; Cosgrove DJ; Kim SH
    Biomacromolecules; 2014 Jul; 15(7):2718-24. PubMed ID: 24846814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attachment of Salmonella strains to a plant cell wall model is modulated by surface characteristics and not by specific carbohydrate interactions.
    Tan MS; Moore SC; Tabor RF; Fegan N; Rahman S; Dykes GA
    BMC Microbiol; 2016 Sep; 16():212. PubMed ID: 27629769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recognition of xyloglucan by the crystalline cellulose-binding site of a family 3a carbohydrate-binding module.
    Hernandez-Gomez MC; Rydahl MG; Rogowski A; Morland C; Cartmell A; Crouch L; Labourel A; Fontes CM; Willats WG; Gilbert HJ; Knox JP
    FEBS Lett; 2015 Aug; 589(18):2297-303. PubMed ID: 26193423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of Xyloglucan onto Cellulose Surfaces of Different Morphologies: An Entropy-Driven Process.
    Benselfelt T; Cranston ED; Ondaral S; Johansson E; Brumer H; Rutland MW; Wågberg L
    Biomacromolecules; 2016 Sep; 17(9):2801-11. PubMed ID: 27476615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xyloglucan sidechains modulate binding to cellulose during in vitro binding assays as predicted by conformational dynamics simulations.
    Levy S; Maclachlan G; Staehelin LA
    Plant J; 1997 Mar; 11(3):373-86. PubMed ID: 9107029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of nanocellulose with a xyloglucan-RGD conjugate enhances adhesion and proliferation of endothelial cells: implications for tissue engineering.
    Bodin A; Ahrenstedt L; Fink H; Brumer H; Risberg B; Gatenholm P
    Biomacromolecules; 2007 Dec; 8(12):3697-704. PubMed ID: 18031014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractionation of xyloglucan fragments and their interaction with cellulose.
    Vincken JP; de Keizer A; Beldman G; Voragen AG
    Plant Physiol; 1995 Aug; 108(4):1579-85. PubMed ID: 7659752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulations of the static and dynamic molecular conformations of xyloglucan. The role of the fucosylated sidechain in surface-specific sidechain folding.
    Levy S; York WS; Stuike-Prill R; Meyer B; Staehelin LA
    Plant J; 1991 Sep; 1(2):195-215. PubMed ID: 1844884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xyloglucan-Functional Latex Particles via RAFT-Mediated Emulsion Polymerization for the Biomimetic Modification of Cellulose.
    Hatton FL; Ruda M; Lansalot M; D'Agosto F; Malmström E; Carlmark A
    Biomacromolecules; 2016 Apr; 17(4):1414-24. PubMed ID: 26913868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic aspects of the adsorption of xyloglucan onto cellulose nanocrystals.
    Villares A; Moreau C; Dammak A; Capron I; Cathala B
    Soft Matter; 2015 Aug; 11(32):6472-81. PubMed ID: 26179417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.