These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 20433185)
1. Surface nanocrystallization for bacterial control. Yu B; Lesiuk A; Davis E; Irvin RT; Li DY Langmuir; 2010 Jul; 26(13):10930-4. PubMed ID: 20433185 [TBL] [Abstract][Full Text] [Related]
2. Evidence of extensive diversity in bacterial adherence mechanisms that exploit unanticipated stainless steel surface structural complexity for biofilm formation. Davis EM; Li D; Shahrooei M; Yu B; Muruve D; Irvin RT Acta Biomater; 2013 Apr; 9(4):6236-44. PubMed ID: 23212080 [TBL] [Abstract][Full Text] [Related]
3. Surface nanocrystallization of stainless steel for reduced biofilm adherence. Yu B; Davis EM; Hodges RS; Irvin RT; Li DY Nanotechnology; 2008 Aug; 19(33):335101. PubMed ID: 21730615 [TBL] [Abstract][Full Text] [Related]
4. Adsorption on stainless steel surfaces of biosurfactants produced by gram-negative and gram-positive bacteria: consequence on the bioadhesive behavior of Listeria monocytogenes. Meylheuc T; Methivier C; Renault M; Herry JM; Pradier CM; Bellon-Fontaine MN Colloids Surf B Biointerfaces; 2006 Oct; 52(2):128-37. PubMed ID: 16781848 [TBL] [Abstract][Full Text] [Related]
5. Adhesion of food-borne bacteria to stainless steel is reduced by food conditioning films. Bernbom N; Ng YY; Jørgensen RL; Arpanaei A; Meyer RL; Kingshott P; Vejborg RM; Klemm P; Gram L J Appl Microbiol; 2009 Apr; 106(4):1268-79. PubMed ID: 19187146 [TBL] [Abstract][Full Text] [Related]
6. The Pseudomonas aeruginosa type IV pilin receptor binding domain functions as an adhesin for both biotic and abiotic surfaces. Giltner CL; van Schaik EJ; Audette GF; Kao D; Hodges RS; Hassett DJ; Irvin RT Mol Microbiol; 2006 Feb; 59(4):1083-96. PubMed ID: 16430686 [TBL] [Abstract][Full Text] [Related]
7. The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel. Bagherifard S; Hickey DJ; de Luca AC; Malheiro VN; Markaki AE; Guagliano M; Webster TJ Biomaterials; 2015 Dec; 73():185-97. PubMed ID: 26410786 [TBL] [Abstract][Full Text] [Related]
8. Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study. Yuan SJ; Pehkonen SO Colloids Surf B Biointerfaces; 2007 Sep; 59(1):87-99. PubMed ID: 17582747 [TBL] [Abstract][Full Text] [Related]
9. A peptide-stainless steel reaction that yields a new bioorganic-metal state of matter. Davis EM; Li DY; Irvin RT Biomaterials; 2011 Aug; 32(23):5311-9. PubMed ID: 21550656 [TBL] [Abstract][Full Text] [Related]
10. Surface free energy effect on bacterial retention. Pereni CI; Zhao Q; Liu Y; Abel E Colloids Surf B Biointerfaces; 2006 Mar; 48(2):143-7. PubMed ID: 16545555 [TBL] [Abstract][Full Text] [Related]
11. Force measurements of bacterial adhesion on metals using a cell probe atomic force microscope. Sheng X; Ting YP; Pehkonen SO J Colloid Interface Sci; 2007 Jun; 310(2):661-9. PubMed ID: 17321534 [TBL] [Abstract][Full Text] [Related]
12. Poisson analysis of streptococcal bond strengthening on stainless steel with and without a salivary conditioning film. Mei L; van der Mei HC; Ren Y; Norde W; Busscher HJ Langmuir; 2009 Jun; 25(11):6227-31. PubMed ID: 19284713 [TBL] [Abstract][Full Text] [Related]
13. Multiple imaging techniques demonstrate the manipulation of surfaces to reduce bacterial contamination and corrosion. Arnold JW; Boothe DH; Suzuki O; Bailey GW J Microsc; 2004 Dec; 216(Pt 3):215-21. PubMed ID: 15566492 [TBL] [Abstract][Full Text] [Related]
14. Optimized grafting of antimicrobial peptides on stainless steel surface and biofilm resistance tests. Héquet A; Humblot V; Berjeaud JM; Pradier CM Colloids Surf B Biointerfaces; 2011 Jun; 84(2):301-9. PubMed ID: 21310597 [TBL] [Abstract][Full Text] [Related]
15. Nanoscale investigation on adhesion of E. coli to surface modified silicone using atomic force microscopy. Cao T; Tang H; Liang X; Wang A; Auner GW; Salley SO; Ng KY Biotechnol Bioeng; 2006 May; 94(1):167-76. PubMed ID: 16538682 [TBL] [Abstract][Full Text] [Related]
16. Mutual influences of Pseudomonas aeruginosa and Desulfovibrio desulfuricans on their adhesion to stainless steel. Medilanski E; Wick LY; Wanner O; Harms H Biofouling; 2003 Apr; 19(2):125-32. PubMed ID: 14618696 [TBL] [Abstract][Full Text] [Related]
17. Oral bacterial adhesion forces to biomaterial surfaces constituting the bracket-adhesive-enamel junction in orthodontic treatment. Mei L; Busscher HJ; van der Mei HC; Chen Y; de Vries J; Ren Y Eur J Oral Sci; 2009 Aug; 117(4):419-26. PubMed ID: 19627354 [TBL] [Abstract][Full Text] [Related]
18. Spring constants and adhesive properties of native bacterial biofilm cells measured by atomic force microscopy. Volle CB; Ferguson MA; Aidala KE; Spain EM; Núñez ME Colloids Surf B Biointerfaces; 2008 Nov; 67(1):32-40. PubMed ID: 18815013 [TBL] [Abstract][Full Text] [Related]
19. Bacteria attachment to surfaces--AFM force spectroscopy and physicochemical analyses. Harimawan A; Rajasekar A; Ting YP J Colloid Interface Sci; 2011 Dec; 364(1):213-8. PubMed ID: 21889162 [TBL] [Abstract][Full Text] [Related]
20. Reduction of bacterial adhesion on ion-implanted stainless steel surfaces. Zhao Q; Liu Y; Wang C; Wang S; Peng N; Jeynes C Med Eng Phys; 2008 Apr; 30(3):341-9. PubMed ID: 17544806 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]