BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 20433200)

  • 1. Molecular structure of WlbB, a bacterial N-acetyltransferase involved in the biosynthesis of 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid .
    Thoden JB; Holden HM
    Biochemistry; 2010 Jun; 49(22):4644-53. PubMed ID: 20433200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that WbpD is an N-acetyltransferase belonging to the hexapeptide acyltransferase superfamily and an important protein for O-antigen biosynthesis in Pseudomonas aeruginosa PAO1.
    Wenzel CQ; Daniels C; Keates RA; Brewer D; Lam JS
    Mol Microbiol; 2005 Sep; 57(5):1288-303. PubMed ID: 16102001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and biochemical characterization of two novel UDP-2,3-diacetamido-2,3-dideoxy-alpha-D-glucuronic acid 2-epimerases from respiratory pathogens.
    Westman EL; McNally DJ; Rejzek M; Miller WL; Kannathasan VS; Preston A; Maskell DJ; Field RA; Brisson JR; Lam JS
    Biochem J; 2007 Jul; 405(1):123-30. PubMed ID: 17346239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of Helicobacter pylori pseudaminic acid biosynthesis N-acetyltransferase PseH: implications for substrate specificity and catalysis.
    Ud-Din AI; Liu YC; Roujeinikova A
    PLoS One; 2015; 10(3):e0115634. PubMed ID: 25781966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional studies of WlbA: A dehydrogenase involved in the biosynthesis of 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid .
    Thoden JB; Holden HM
    Biochemistry; 2010 Sep; 49(36):7939-48. PubMed ID: 20690587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical and structural characterization of WlbA from Bordetella pertussis and Chromobacterium violaceum: enzymes required for the biosynthesis of 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid.
    Thoden JB; Holden HM
    Biochemistry; 2011 Mar; 50(9):1483-91. PubMed ID: 21241053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of WbpB, WbpE, and WbpD and reconstitution of a pathway for the biosynthesis of UDP-2,3-diacetamido-2,3-dideoxy-D-mannuronic acid in Pseudomonas aeruginosa.
    Westman EL; McNally DJ; Charchoglyan A; Brewer D; Field RA; Lam JS
    J Biol Chem; 2009 May; 284(18):11854-62. PubMed ID: 19282284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural analysis of a bacterial UDP-sugar 2-epimerase reveals the active site architecture before and after catalysis.
    Thoden JB; McKnight JO; Kroft CW; Jast JDT; Holden HM
    J Biol Chem; 2023 Oct; 299(10):105200. PubMed ID: 37660908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical analysis and structure determination of bacterial acetyltransferases responsible for the biosynthesis of UDP-N,N'-diacetylbacillosamine.
    Morrison MJ; Imperiali B
    J Biol Chem; 2013 Nov; 288(45):32248-32260. PubMed ID: 24064219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the enzymes required for the biosynthesis of 2,3-diacetamido-2,3-dideoxy-d-glucuronic acid in Psychrobacter cryohalolentis K5
    Hofmeister DL; Seltzner CA; Bockhaus NJ; Thoden JB; Holden HM
    Protein Sci; 2023 Jan; 32(1):e4502. PubMed ID: 36346293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and functional studies of QdtC: an N-acetyltransferase required for the biosynthesis of dTDP-3-acetamido-3,6-dideoxy-alpha-D-glucose.
    Thoden JB; Cook PD; Schäffer C; Messner P; Holden HM
    Biochemistry; 2009 Mar; 48(12):2699-709. PubMed ID: 19191736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of two enzymes from Psychrobacter cryohalolentis that are required for the biosynthesis of an unusual diacetamido-d-sugar.
    Linehan MP; Thoden JB; Holden HM
    J Biol Chem; 2021; 296():100463. PubMed ID: 33639157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure and catalytic mechanism of PglD from Campylobacter jejuni.
    Olivier NB; Imperiali B
    J Biol Chem; 2008 Oct; 283(41):27937-27946. PubMed ID: 18667421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of UDP-GlcNAc(3NAc)A by WbpB, WbpE, and WbpD: enzymes in the Wbp pathway responsible for O-antigen assembly in Pseudomonas aeruginosa PAO1.
    Larkin A; Imperiali B
    Biochemistry; 2009 Jun; 48(23):5446-55. PubMed ID: 19348502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The crystal structures of Apo and complexed Saccharomyces cerevisiae GNA1 shed light on the catalytic mechanism of an amino-sugar N-acetyltransferase.
    Peneff C; Mengin-Lecreulx D; Bourne Y
    J Biol Chem; 2001 May; 276(19):16328-34. PubMed ID: 11278591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical investigation of an N-acetyltransferase from Helicobacter pullorum.
    Griffiths WA; Spencer KD; Thoden JB; Holden HM
    Protein Sci; 2021 Dec; 30(12):2418-2432. PubMed ID: 34651380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and active site residues of PglD, an N-acetyltransferase from the bacillosamine synthetic pathway required for N-glycan synthesis in Campylobacter jejuni.
    Rangarajan ES; Ruane KM; Sulea T; Watson DC; Proteau A; Leclerc S; Cygler M; Matte A; Young NM
    Biochemistry; 2008 Feb; 47(7):1827-36. PubMed ID: 18198901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic mechanism of perosamine N-acetyltransferase revealed by high-resolution X-ray crystallographic studies and kinetic analyses.
    Thoden JB; Reinhardt LA; Cook PD; Menden P; Cleland WW; Holden HM
    Biochemistry; 2012 Apr; 51(16):3433-44. PubMed ID: 22443398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and functional analysis of Campylobacter jejuni PseG: a udp-sugar hydrolase from the pseudaminic acid biosynthetic pathway.
    Rangarajan ES; Proteau A; Cui Q; Logan SM; Potetinova Z; Whitfield D; Purisima EO; Cygler M; Matte A; Sulea T; Schoenhofen IC
    J Biol Chem; 2009 Jul; 284(31):20989-1000. PubMed ID: 19483088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesis of a rare di-N-acetylated sugar in the lipopolysaccharides of both Pseudomonas aeruginosa and Bordetella pertussis occurs via an identical scheme despite different gene clusters.
    Westman EL; Preston A; Field RA; Lam JS
    J Bacteriol; 2008 Sep; 190(18):6060-9. PubMed ID: 18621892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.