These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 2043370)

  • 1. [Developmental characteristics of topographic EEG in the newborn using an autoregressive model].
    Ishiwa S; Ogawa T; Sonoda H; Sawaguchi H
    No To Hattatsu; 1991 May; 23(3):252-8. PubMed ID: 2043370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental characteristics of topographic EEG in the newborn using an autoregressive model.
    Ishiwa S; Ogawa T; Sonoda H
    Brain Topogr; 1991; 4(1):23-30. PubMed ID: 1764346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental changes in electroencephalogram for term and preterm infants using an autoregressive model.
    Sawaguchi H; Ogawa T; Takano T; Sato K
    Acta Paediatr Jpn; 1996 Dec; 38(6):580-9. PubMed ID: 9002290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topographic mapping of the EEG in premature infants and neonates.
    Hughes JR; Kohrman MH
    Clin Electroencephalogr; 1989 Oct; 20(4):228-34. PubMed ID: 2791312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparisons of EEG sleep state-specific spectral values between healthy full-term and preterm infants at comparable postconceptional ages.
    Scher MS; Sun M; Steppe DA; Banks DL; Guthrie RD; Sclabassi RJ
    Sleep; 1994 Feb; 17(1):47-51. PubMed ID: 8191202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methodological issues in coding sleep states in immature infants.
    Sahni R; Schulze KF; Stefanski M; Myers MM; Fifer WP
    Dev Psychobiol; 1995 Mar; 28(2):85-101. PubMed ID: 8529787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel quantitative measure of Tracé-alternant EEG activity and its association with sleep states of preterm infants.
    Myers MM; Fifer WP; Grose-Fifer J; Sahni R; Stark RI; Schulze KF
    Dev Psychobiol; 1997 Nov; 31(3):167-74. PubMed ID: 9386918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sleep-wake cycles in preterm infants below 30 weeks of gestational age. Preliminary results of a prospective amplitude-integrated EEG study.
    Kuhle S; Klebermass K; Olischar M; Hulek M; Prusa AR; Kohlhauser C; Birnbacher R; Weninger M
    Wien Klin Wochenschr; 2001 Apr; 113(7-8):219-23. PubMed ID: 11383380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear dynamical analysis of the neonatal EEG time series: the relationship between sleep state and complexity.
    Janjarasjitt S; Scher MS; Loparo KA
    Clin Neurophysiol; 2008 Aug; 119(8):1812-1823. PubMed ID: 18486543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topographic mapping of electroencephalography coherence in hypnagogic state.
    Tanaka H; Hayashi M; Hori T
    Psychiatry Clin Neurosci; 1998 Apr; 52(2):147-8. PubMed ID: 9628119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topographic mapping of EEG spectral power and coherence in delta activity during the transition from wakefulness to sleep.
    Tanaka H; Hayashi M; Hori T
    Psychiatry Clin Neurosci; 1999 Apr; 53(2):155-7. PubMed ID: 10459676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental characteristics of topographic EEG in school-age children using an autoregressive model.
    Tanimura R; Sonoda H; Ogawa T
    Brain Topogr; 1996; 8(3):261-3. PubMed ID: 8728415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maturational trends of EEG-sleep measures in the healthy preterm neonate.
    Scher MS; Steppe DA; Banks DL; Guthrie RD; Sclabassi RJ
    Pediatr Neurol; 1995 May; 12(4):314-22. PubMed ID: 7546004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topography of EEG complexity in human neonates: effect of the postmenstrual age and the sleep state.
    Pereda E; de La Cruz DM; Mañas S; Garrido JM; López S; González JJ
    Neurosci Lett; 2006 Feb; 394(2):152-7. PubMed ID: 16278043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative topographic differentiation of the neonatal EEG.
    Paul K; Krajca V; Roth Z; Melichar J; Petránek S
    Clin Neurophysiol; 2006 Sep; 117(9):2050-8. PubMed ID: 16887384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Normal electrographic-polysomnographic patterns in preterm and fullterm infants.
    Scher MS
    Semin Pediatr Neurol; 1996 Mar; 3(1):2-12. PubMed ID: 8795836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [A power spectral analysis of the EEG in the newborns. I. Developmental changes of normal babies].
    Koterazawa K; Kodama S; Nakamura H
    No To Hattatsu; 1990 Nov; 22(6):573-81. PubMed ID: 2261232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topographic mapping of EEG during sleep.
    Zeitlhofer J; Anderer P; Obergottsberger S; Schimicek P; Lurger S; Marschnigg E; Saletu B; Deecke L
    Brain Topogr; 1993; 6(2):123-9. PubMed ID: 8123427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatio-temporal organization of EEG in premature infants and full-term new-borns.
    Joseph JP; Lesevre N; Dreyfus-Brisac C
    Electroencephalogr Clin Neurophysiol; 1976 Feb; 40(2):153-68. PubMed ID: 55356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of perinatal dioxin exposure on neonatal electroencephalography (EEG) activity of the quiet sleep stage in the most contaminated area from Agent Orange in Vietnam.
    Pham NT; Nishijo M; Nghiem TTG; Pham TT; Tran NN; Le VQ; Vu TH; Tran HA; Phan HAV; Do Q; Takiguchi T; Nishino Y; Nishijo H
    Int J Hyg Environ Health; 2021 Mar; 232():113661. PubMed ID: 33296778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.