BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 20433838)

  • 21. Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E. coli.
    de Marco A; Deuerling E; Mogk A; Tomoyasu T; Bukau B
    BMC Biotechnol; 2007 Jun; 7():32. PubMed ID: 17565681
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The mRNA binding-mediated self-regulatory function of small heat shock protein IbpA in γ-proteobacteria is conferred by a conserved arginine.
    Cheng Y; Miwa T; Taguchi H
    J Biol Chem; 2023 Sep; 299(9):105108. PubMed ID: 37517700
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A review on oligomeric polydispersity and oligomers-dependent holding chaperone activity of the small heat-shock protein IbpB of Escherichia coli.
    Azaharuddin M; Pal A; Mitra S; Dasgupta R; Basu T
    Cell Stress Chaperones; 2023 Nov; 28(6):689-696. PubMed ID: 37910345
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB.
    Weibezahn J; Tessarz P; Schlieker C; Zahn R; Maglica Z; Lee S; Zentgraf H; Weber-Ban EU; Dougan DA; Tsai FT; Mogk A; Bukau B
    Cell; 2004 Nov; 119(5):653-65. PubMed ID: 15550247
    [TBL] [Abstract][Full Text] [Related]  

  • 25. IbpA and IbpB, the new heat-shock proteins, bind to endogenous Escherichia coli proteins aggregated intracellularly by heat shock.
    Laskowska E; Wawrzynów A; Taylor A
    Biochimie; 1996; 78(2):117-22. PubMed ID: 8818220
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetics of heat-shock response and inclusion body formation during temperature-induced production of basic fibroblast growth factor in high-cell-density cultures of recombinant Escherichia coli.
    Hoffmann F; Rinas U
    Biotechnol Prog; 2000; 16(6):1000-7. PubMed ID: 11101327
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of oligomerisation and substrate recognition sites of small heat shock proteins by peptide arrays.
    Lentze N; Narberhaus F
    Biochem Biophys Res Commun; 2004 Dec; 325(2):401-7. PubMed ID: 15530406
    [TBL] [Abstract][Full Text] [Related]  

  • 28.
    Miwa T; Taguchi H
    Proc Natl Acad Sci U S A; 2023 Aug; 120(32):e2304841120. PubMed ID: 37523569
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro holdase activity of E. coli small heat-shock proteins IbpA, IbpB and IbpAB: a biophysical study with some unconventional techniques.
    Roy SS; Patra M; Nandy SK; Banik M; Dasgupta R; Basu T
    Protein Pept Lett; 2014 Jun; 21(6):564-71. PubMed ID: 24364870
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Towards a unifying mechanism for ClpB/Hsp104-mediated protein disaggregation and prion propagation.
    Haslberger T; Bukau B; Mogk A
    Biochem Cell Biol; 2010 Feb; 88(1):63-75. PubMed ID: 20130680
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystal structure of Hsc20, a J-type Co-chaperone from Escherichia coli.
    Cupp-Vickery JR; Vickery LE
    J Mol Biol; 2000 Dec; 304(5):835-45. PubMed ID: 11124030
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal structure of constitutively monomeric E. coli Hsp33 mutant with chaperone activity.
    Chi SW; Jeong DG; Woo JR; Lee HS; Park BC; Kim BY; Erikson RL; Ryu SE; Kim SJ
    FEBS Lett; 2011 Feb; 585(4):664-70. PubMed ID: 21266175
    [TBL] [Abstract][Full Text] [Related]  

  • 33. All three J-domain proteins of the Escherichia coli DnaK chaperone machinery are DNA binding proteins.
    Gur E; Katz C; Ron EZ
    FEBS Lett; 2005 Mar; 579(9):1935-9. PubMed ID: 15792799
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones.
    Rodriguez F; Arsène-Ploetze F; Rist W; Rüdiger S; Schneider-Mergener J; Mayer MP; Bukau B
    Mol Cell; 2008 Nov; 32(3):347-58. PubMed ID: 18995833
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The N-terminal domain of Escherichia coli ClpB enhances chaperone function.
    Chow IT; Barnett ME; Zolkiewski M; Baneyx F
    FEBS Lett; 2005 Aug; 579(20):4242-8. PubMed ID: 16051221
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DnaK-mediated association of ClpB to protein aggregates. A bichaperone network at the aggregate surface.
    Acebrón SP; Martín I; del Castillo U; Moro F; Muga A
    FEBS Lett; 2009 Sep; 583(18):2991-6. PubMed ID: 19698713
    [TBL] [Abstract][Full Text] [Related]  

  • 37. M domains couple the ClpB threading motor with the DnaK chaperone activity.
    Haslberger T; Weibezahn J; Zahn R; Lee S; Tsai FT; Bukau B; Mogk A
    Mol Cell; 2007 Jan; 25(2):247-60. PubMed ID: 17244532
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiple layers of control govern expression of the Escherichia coli ibpAB heat-shock operon.
    Gaubig LC; Waldminghaus T; Narberhaus F
    Microbiology (Reading); 2011 Jan; 157(Pt 1):66-76. PubMed ID: 20864473
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two Bacterial Small Heat Shock Proteins, IbpA and IbpB, Form a Functional Heterodimer.
    Piróg A; Cantini F; Nierzwicki Ł; Obuchowski I; Tomiczek B; Czub J; Liberek K
    J Mol Biol; 2021 Jul; 433(15):167054. PubMed ID: 34022209
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Functionality of IbpA from
    Chernova LS; Vishnyakov IE; Börner J; Bogachev MI; Thormann KM; Kayumov AR
    Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37895124
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.