These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 20433895)

  • 1. Implications on visual apperception: energy, duration, structure and synchronization.
    Bókkon I; Vimal RL
    Biosystems; 2010 Jul; 101(1):1-9. PubMed ID: 20433895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A neural model of the temporal dynamics of figure-ground segregation in motion perception.
    Raudies F; Neumann H
    Neural Netw; 2010 Mar; 23(2):160-76. PubMed ID: 19931405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale gamma-band phase synchronization and selective attention.
    Doesburg SM; Roggeveen AB; Kitajo K; Ward LM
    Cereb Cortex; 2008 Feb; 18(2):386-96. PubMed ID: 17556771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parvocellular and magnocellular contributions to the initial generators of the visual evoked potential: high-density electrical mapping of the "C1" component.
    Foxe JJ; Strugstad EC; Sehatpour P; Molholm S; Pasieka W; Schroeder CE; McCourt ME
    Brain Topogr; 2008 Sep; 21(1):11-21. PubMed ID: 18784997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of pathways mediating preserved vision after striate cortex lesions.
    Schoenfeld MA; Noesselt T; Poggel D; Tempelmann C; Hopf JM; Woldorff MG; Heinze HJ; Hillyard SA
    Ann Neurol; 2002 Dec; 52(6):814-24. PubMed ID: 12447936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Timing of V1/V2 and V5+ activations during coherent motion of dots: an MEG study.
    Prieto EA; Barnikol UB; Soler EP; Dolan K; Hesselmann G; Mohlberg H; Amunts K; Zilles K; Niedeggen M; Tass PA
    Neuroimage; 2007 Oct; 37(4):1384-95. PubMed ID: 17689986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary visual cortex and visual awareness.
    Tong F
    Nat Rev Neurosci; 2003 Mar; 4(3):219-29. PubMed ID: 12612634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of striate and extrastriate visual cortical areas in spatial attention.
    Martínez A; Anllo-Vento L; Sereno MI; Frank LR; Buxton RB; Dubowitz DJ; Wong EC; Hinrichs H; Heinze HJ; Hillyard SA
    Nat Neurosci; 1999 Apr; 2(4):364-9. PubMed ID: 10204544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial attention in area V4 is mediated by circuits in primary visual cortex.
    Tiesinga PH; Buia CI
    Neural Netw; 2009 Oct; 22(8):1039-54. PubMed ID: 19643574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence of pattern onset responses in the human visual areas: an fMRI constrained VEP source analysis.
    Vanni S; Warnking J; Dojat M; Delon-Martin C; Bullier J; Segebarth C
    Neuroimage; 2004 Mar; 21(3):801-17. PubMed ID: 15006647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synchrony and covariation of firing rates in the primary visual cortex during contour grouping.
    Roelfsema PR; Lamme VA; Spekreijse H
    Nat Neurosci; 2004 Sep; 7(9):982-91. PubMed ID: 15322549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchrony dynamics in monkey V1 predict success in visual detection.
    van der Togt C; Kalitzin S; Spekreijse H; Lamme VA; Supèr H
    Cereb Cortex; 2006 Jan; 16(1):136-48. PubMed ID: 15843628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: a dual tracer study.
    Colby CL; Gattass R; Olson CR; Gross CG
    J Comp Neurol; 1988 Mar; 269(3):392-413. PubMed ID: 2453534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scene segmentation and attention in primate cortical areas V1 and V2.
    Marcus DS; Van Essen DC
    J Neurophysiol; 2002 Nov; 88(5):2648-58. PubMed ID: 12424300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinotopic organization of striate and extrastriate visual cortex in the mouse.
    Wagor E; Mangini NJ; Pearlman AL
    J Comp Neurol; 1980 Sep; 193(1):187-202. PubMed ID: 6776164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual topography of V2 in the macaque.
    Gattass R; Gross CG; Sandell JH
    J Comp Neurol; 1981 Oct; 201(4):519-39. PubMed ID: 7287933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective visual responses to expansion and rotation in the human MT complex revealed by functional magnetic resonance imaging adaptation.
    Wall MB; Lingnau A; Ashida H; Smith AT
    Eur J Neurosci; 2008 May; 27(10):2747-57. PubMed ID: 18547254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study of shape representation in macaque visual areas v2 and v4.
    Hegdé J; Van Essen DC
    Cereb Cortex; 2007 May; 17(5):1100-16. PubMed ID: 16785255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Causal visual interactions as revealed by an information theoretic measure and fMRI.
    Hinrichs H; Heinze HJ; Schoenfeld MA
    Neuroimage; 2006 Jul; 31(3):1051-60. PubMed ID: 16545966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional organization in the visual cortex of the golden hamster.
    Tiao YC; Blakemore C
    J Comp Neurol; 1976 Aug; 168(4):459-81. PubMed ID: 939818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.