These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 20434159)

  • 1. Automated muscle wrapping using finite element contact detection.
    Favre P; Gerber C; Snedeker JG
    J Biomech; 2010 Jul; 43(10):1931-40. PubMed ID: 20434159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated model of active glenohumeral stability.
    Favre P; Senteler M; Hipp J; Scherrer S; Gerber C; Snedeker JG
    J Biomech; 2012 Aug; 45(13):2248-55. PubMed ID: 22818663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The convex wrapping algorithm: a method for identifying muscle paths using the underlying bone mesh.
    Desailly E; Sardain P; Khouri N; Yepremian D; Lacouture P
    J Biomech; 2010 Sep; 43(13):2601-7. PubMed ID: 20627304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions of the individual muscles of the shoulder to glenohumeral joint stability during abduction.
    Yanagawa T; Goodwin CJ; Shelburne KB; Giphart JE; Torry MR; Pandy MG
    J Biomech Eng; 2008 Apr; 130(2):021024. PubMed ID: 18412511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probabilistic modeling of knee muscle moment arms: effects of methods, origin-insertion, and kinematic variability.
    Pal S; Langenderfer JE; Stowe JQ; Laz PJ; Petrella AJ; Rullkoetter PJ
    Ann Biomed Eng; 2007 Sep; 35(9):1632-42. PubMed ID: 17546504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational method for muscle-path representation in musculoskeletal models.
    Gao F; Damsgaard M; Rasmussen J; Christensen ST
    Biol Cybern; 2002 Sep; 87(3):199-210. PubMed ID: 12200615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Techniques for modeling muscle-induced forces in finite element models of skeletal structures.
    Grosse IR; Dumont ER; Coletta C; Tolleson A
    Anat Rec (Hoboken); 2007 Sep; 290(9):1069-88. PubMed ID: 17721980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Algorithms for exact multi-object muscle wrapping and application to the deltoid muscle wrapping around the humerus.
    Marsden SP; Swailes DC; Johnson GR
    Proc Inst Mech Eng H; 2008 Oct; 222(7):1081-95. PubMed ID: 19024156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methodology and sensitivity studies for finite element modeling of the inferior glenohumeral ligament complex.
    Ellis BJ; Debski RE; Moore SM; McMahon PJ; Weiss JA
    J Biomech; 2007; 40(3):603-12. PubMed ID: 16580002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Lagrange multiplier mixed finite element formulation for three-dimensional contact of biphasic tissues.
    Yang T; Spilker RL
    J Biomech Eng; 2007 Jun; 129(3):457-71. PubMed ID: 17536914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesh-morphing algorithms for specimen-specific finite element modeling.
    Sigal IA; Hardisty MR; Whyne CM
    J Biomech; 2008; 41(7):1381-9. PubMed ID: 18397789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global optimization method for combined spherical-cylindrical wrapping in musculoskeletal upper limb modelling.
    Audenaert A; Audenaert E
    Comput Methods Programs Biomed; 2008 Oct; 92(1):8-19. PubMed ID: 18606476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and validation of a muscle wrapping model applied to intact and reverse total shoulder arthroplasty shoulders.
    Elwell JA; Athwal GS; Willing R
    J Orthop Res; 2018 Dec; 36(12):3308-3317. PubMed ID: 30144134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Three-dimensional geometry of the proximal humerus and rotator cuff attachment and its utilization in shoulder arthroplasty].
    Hromádka R; Pokorný D; Popelka S; Jahoda D; Sosna A
    Acta Chir Orthop Traumatol Cech; 2006 Apr; 73(2):77-84. PubMed ID: 16735003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [An MR-based technique for determination of the subacromial space width in subjects with and without shoulder muscle activity].
    Graichen H; Bonel H; Stammberger T; Heuck A; Englmeier KH; Reiser M; Eckstein F
    Z Orthop Ihre Grenzgeb; 1999; 137(1):2-6. PubMed ID: 10327553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies.
    Liacouras PC; Wayne JS
    J Biomech Eng; 2007 Dec; 129(6):811-17. PubMed ID: 18067384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional scapulothoracic motion during active and passive arm elevation.
    Ebaugh DD; McClure PW; Karduna AR
    Clin Biomech (Bristol); 2005 Aug; 20(7):700-9. PubMed ID: 15935534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of rotator cuff tears on muscle moment arms: a computational study.
    Adams CR; Baldwin MA; Laz PJ; Rullkoetter PJ; Langenderfer JE
    J Biomech; 2007; 40(15):3373-80. PubMed ID: 17597135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of muscle wrapping objects using simulated annealing.
    Gatti CJ; Hughes RE
    Ann Biomed Eng; 2009 Jul; 37(7):1342-7. PubMed ID: 19434495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A musculoskeletal shoulder model based on pseudo-inverse and null-space optimization.
    Terrier A; Aeberhard M; Michellod Y; Mullhaupt P; Gillet D; Farron A; Pioletti DP
    Med Eng Phys; 2010 Nov; 32(9):1050-6. PubMed ID: 20709589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.