BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 20434161)

  • 1. High-performance computing of flow and transport in physically reconstructed silica monoliths.
    Hlushkou D; Bruns S; Tallarek U
    J Chromatogr A; 2010 Jun; 1217(23):3674-82. PubMed ID: 20434161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrodynamic and dispersion behavior in a non-porous silica monolith through fluid dynamic study of a computational mimic reconstructed from sub-micro-tomographic scans.
    Loh KC; Vasudevan V
    J Chromatogr A; 2013 Jan; 1274():65-76. PubMed ID: 23290336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From pore scale to column scale dispersion in capillary silica monoliths.
    Hlushkou D; Bruns S; Höltzel A; Tallarek U
    Anal Chem; 2010 Sep; 82(17):7150-9. PubMed ID: 20684506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow-through pore characteristics of monolithic silicas and their impact on column performance in high-performance liquid chromatography.
    Skudas R; Grimes BA; Thommes M; Unger KK
    J Chromatogr A; 2009 Mar; 1216(13):2625-36. PubMed ID: 19233368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of first and second generation analytical silica monoliths by pore-scale simulations of eddy dispersion in the bulk region.
    Hlushkou D; Hormann K; Höltzel A; Khirevich S; Seidel-Morgenstern A; Tallarek U
    J Chromatogr A; 2013 Aug; 1303():28-38. PubMed ID: 23845759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Confocal laser scanning microscopy method for quantitative characterization of silica monolith morphology.
    Bruns S; Müllner T; Kollmann M; Schachtner J; Höltzel A; Tallarek U
    Anal Chem; 2010 Aug; 82(15):6569-75. PubMed ID: 20593848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of monolithic silica capillary columns with increased phase ratios and small-sized domains.
    Hara T; Kobayashi H; Ikegami T; Nakanishi K; Tanaka N
    Anal Chem; 2006 Nov; 78(22):7632-42. PubMed ID: 17105153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological analysis of physically reconstructed capillary hybrid silica monoliths and correlation with separation efficiency.
    Bruns S; Hara T; Smarsly BM; Tallarek U
    J Chromatogr A; 2011 Aug; 1218(31):5187-94. PubMed ID: 21726873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semi-micro-monolithic columns using macroporous silica rods with improved performance.
    Morisato K; Miyazaki S; Ohira M; Furuno M; Nyudo M; Terashima H; Nakanishi K
    J Chromatogr A; 2009 Oct; 1216(44):7384-7. PubMed ID: 19500793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutual consistency between simulated and measured pressure drops in silica monoliths based on geometrical parameters obtained by three-dimensional laser scanning confocal microscope observations.
    Saito H; Nakanishi K; Hirao K; Jinnai H
    J Chromatogr A; 2006 Jun; 1119(1-2):95-104. PubMed ID: 16616926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From random sphere packings to regular pillar arrays: analysis of transverse dispersion.
    Daneyko A; Hlushkou D; Khirevich S; Tallarek U
    J Chromatogr A; 2012 Sep; 1257():98-115. PubMed ID: 22921359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ground, sieved, and C18 modified monolithic silica particles for packing material of microcolumn high-performance liquid chromatography.
    Ko JH; Baik YS; Park ST; Cheong WJ
    J Chromatogr A; 2007 Mar; 1144(2):269-74. PubMed ID: 17289065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radial heterogeneity of some analytical columns used in high-performance liquid chromatography.
    Abia JA; Mriziq KS; Guiochon GA
    J Chromatogr A; 2009 Apr; 1216(15):3185-91. PubMed ID: 19268295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monolithic columns in high-performance liquid chromatography.
    Guiochon G
    J Chromatogr A; 2007 Oct; 1168(1-2):101-68; discussion 100. PubMed ID: 17640660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of inner diameter of monolithic column on separation of proteins in capillary-liquid chromatography.
    Gu C; Lin L; Chen X; Jia J; Ren J; Fang N
    J Chromatogr A; 2007 Nov; 1170(1-2):15-22. PubMed ID: 17915238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real space observation of silica monoliths in the formation process.
    Saito H; Kanamori K; Nakanishi K; Hirao K
    J Sep Sci; 2007 Nov; 30(17):2881-7. PubMed ID: 17960851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porous monoliths: stationary phases of choice for high performance liquid chromatography in various formats.
    Svec F
    Se Pu; 2005 Nov; 23(6):585-94. PubMed ID: 16498986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphology and separation efficiency of a new generation of analytical silica monoliths.
    Hormann K; Müllner T; Bruns S; Höltzel A; Tallarek U
    J Chromatogr A; 2012 Jan; 1222():46-58. PubMed ID: 22197022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale simulation of flow and transport in reconstructed HPLC-microchip packings.
    Khirevich S; Höltzel A; Ehlert S; Seidel-Morgenstern A; Tallarek U
    Anal Chem; 2009 Jun; 81(12):4937-45. PubMed ID: 19459621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of penetrable macroporous silica spheres for high-performance liquid chromatography.
    Wei JX; Shi ZG; Chen F; Feng YQ; Guo QZ
    J Chromatogr A; 2009 Oct; 1216(44):7388-93. PubMed ID: 19442982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.