These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
386 related articles for article (PubMed ID: 20434456)
1. Conformational sampling of aminoacyl-tRNA during selection on the bacterial ribosome. Geggier P; Dave R; Feldman MB; Terry DS; Altman RB; Munro JB; Blanchard SC J Mol Biol; 2010 Jun; 399(4):576-95. PubMed ID: 20434456 [TBL] [Abstract][Full Text] [Related]
2. Elongation factor-Tu can repetitively engage aminoacyl-tRNA within the ribosome during the proofreading stage of tRNA selection. Morse JC; Girodat D; Burnett BJ; Holm M; Altman RB; Sanbonmatsu KY; Wieden HJ; Blanchard SC Proc Natl Acad Sci U S A; 2020 Feb; 117(7):3610-3620. PubMed ID: 32024753 [TBL] [Abstract][Full Text] [Related]
3. Codon-dependent conformational change of elongation factor Tu preceding GTP hydrolysis on the ribosome. Rodnina MV; Fricke R; Kuhn L; Wintermeyer W EMBO J; 1995 Jun; 14(11):2613-9. PubMed ID: 7781613 [TBL] [Abstract][Full Text] [Related]
4. The reaction of ribosomes with elongation factor Tu.GTP complexes. Aminoacyl-tRNA-independent reactions in the elongation cycle determine the accuracy of protein synthesis. Thompson RC; Dix DB; Karim AM J Biol Chem; 1986 Apr; 261(11):4868-74. PubMed ID: 3514605 [TBL] [Abstract][Full Text] [Related]
5. Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome. Pape T; Wintermeyer W; Rodnina M EMBO J; 1999 Jul; 18(13):3800-7. PubMed ID: 10393195 [TBL] [Abstract][Full Text] [Related]
6. Fluorescence characterization of the interaction of various transfer RNA species with elongation factor Tu.GTP: evidence for a new functional role for elongation factor Tu in protein biosynthesis. Janiak F; Dell VA; Abrahamson JK; Watson BS; Miller DL; Johnson AE Biochemistry; 1990 May; 29(18):4268-77. PubMed ID: 2190631 [TBL] [Abstract][Full Text] [Related]
7. GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs. Rodnina MV; Wintermeyer W Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1945-9. PubMed ID: 7892205 [TBL] [Abstract][Full Text] [Related]
8. Initial binding of the elongation factor Tu.GTP.aminoacyl-tRNA complex preceding codon recognition on the ribosome. Rodnina MV; Pape T; Fricke R; Kuhn L; Wintermeyer W J Biol Chem; 1996 Jan; 271(2):646-52. PubMed ID: 8557669 [TBL] [Abstract][Full Text] [Related]
9. Structural dynamics of translation elongation factor Tu during aa-tRNA delivery to the ribosome. Kavaliauskas D; Chen C; Liu W; Cooperman BS; Goldman YE; Knudsen CR Nucleic Acids Res; 2018 Sep; 46(16):8651-8661. PubMed ID: 30107527 [TBL] [Abstract][Full Text] [Related]
10. Transient conformational states of aminoacyl-tRNA during ribosome binding catalyzed by elongation factor Tu. Rodnina MV; Fricke R; Wintermeyer W Biochemistry; 1994 Oct; 33(40):12267-75. PubMed ID: 7918447 [TBL] [Abstract][Full Text] [Related]
11. Intact aminoacyl-tRNA is required to trigger GTP hydrolysis by elongation factor Tu on the ribosome. Piepenburg O; Pape T; Pleiss JA; Wintermeyer W; Uhlenbeck OC; Rodnina MV Biochemistry; 2000 Feb; 39(7):1734-8. PubMed ID: 10677222 [TBL] [Abstract][Full Text] [Related]
12. The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Schmeing TM; Voorhees RM; Kelley AC; Gao YG; Murphy FV; Weir JR; Ramakrishnan V Science; 2009 Oct; 326(5953):688-694. PubMed ID: 19833920 [TBL] [Abstract][Full Text] [Related]
13. The interface between Escherichia coli elongation factor Tu and aminoacyl-tRNA. Yikilmaz E; Chapman SJ; Schrader JM; Uhlenbeck OC Biochemistry; 2014 Sep; 53(35):5710-20. PubMed ID: 25094027 [TBL] [Abstract][Full Text] [Related]
14. Kinetic determinants of high-fidelity tRNA discrimination on the ribosome. Gromadski KB; Rodnina MV Mol Cell; 2004 Jan; 13(2):191-200. PubMed ID: 14759365 [TBL] [Abstract][Full Text] [Related]
15. The G222D mutation in elongation factor Tu inhibits the codon-induced conformational changes leading to GTPase activation on the ribosome. Vorstenbosch E; Pape T; Rodnina MV; Kraal B; Wintermeyer W EMBO J; 1996 Dec; 15(23):6766-74. PubMed ID: 8978702 [TBL] [Abstract][Full Text] [Related]
16. Decoding at the ribosomal A site. The effect of a defined codon-anticodon mismatch upon the behavior of bound aminoacyl transfer RNA. Hornig H; Woolley P; Lührmann R J Biol Chem; 1984 May; 259(9):5632-6. PubMed ID: 6371008 [TBL] [Abstract][Full Text] [Related]
17. Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation process. Valle M; Sengupta J; Swami NK; Grassucci RA; Burkhardt N; Nierhaus KH; Agrawal RK; Frank J EMBO J; 2002 Jul; 21(13):3557-67. PubMed ID: 12093756 [TBL] [Abstract][Full Text] [Related]
18. Distinct functional classes of ram mutations in 16S rRNA. McClory SP; Devaraj A; Fredrick K RNA; 2014 Apr; 20(4):496-504. PubMed ID: 24572811 [TBL] [Abstract][Full Text] [Related]
19. Cryo-EM shows stages of initial codon selection on the ribosome by aa-tRNA in ternary complex with GTP and the GTPase-deficient EF-TuH84A. Fislage M; Zhang J; Brown ZP; Mandava CS; Sanyal S; Ehrenberg M; Frank J Nucleic Acids Res; 2018 Jun; 46(11):5861-5874. PubMed ID: 29733411 [TBL] [Abstract][Full Text] [Related]
20. Fidelity of aminoacyl-tRNA selection on the ribosome: kinetic and structural mechanisms. Rodnina MV; Wintermeyer W Annu Rev Biochem; 2001; 70():415-35. PubMed ID: 11395413 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]