BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 20434482)

  • 1. Cooperativity in the two-domain arginine kinase from the sea anemone Anthopleura japonicus. II. Evidence from site-directed mutagenesis studies.
    Tada H; Suzuki T
    Int J Biol Macromol; 2010 Aug; 47(2):250-4. PubMed ID: 20434482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperativity in the two-domain arginine kinase from the sea anemone Anthopleura japonicus.
    Tada H; Nishimura Y; Suzuki T
    Int J Biol Macromol; 2008 Jan; 42(1):46-51. PubMed ID: 17950825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-domain arginine kinase from the deep-sea clam Calyptogena kaikoi--evidence of two active domains.
    Uda K; Yamamoto K; Iwasaki N; Iwai M; Fujikura K; Ellington WR; Suzuki T
    Comp Biochem Physiol B Biochem Mol Biol; 2008 Oct; 151(2):176-82. PubMed ID: 18639645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The roles of C-terminal loop residues of dimeric arginine kinase from sea cucumber Stichopus japonicus in catalysis, specificity and structure.
    Zhang JW; Zhao TJ; Wang SL; Guo Q; Liu TT; Zhao F; Wang XC
    Int J Biol Macromol; 2006 May; 38(3-5):203-10. PubMed ID: 16574215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of phosphagen kinase. Isolation, characterization and cDNA-derived amino acid sequence of two-domain arginine kinase from the sea anemone Anthopleura japonicus.
    Suzuki T; Kawasaki Y; Furukohri T
    Biochem J; 1997 Nov; 328 ( Pt 1)(Pt 1):301-6. PubMed ID: 9359868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A diverse array of creatine kinase and arginine kinase isoform genes is present in the starlet sea anemone Nematostella vectensis, a cnidarian model system for studying developmental evolution.
    Uda K; Ellington WR; Suzuki T
    Gene; 2012 Apr; 497(2):214-27. PubMed ID: 22305986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acid residues 62 and 193 play the key role in regulating the synergism of substrate binding in oyster arginine kinase.
    Fujimoto N; Tanaka K; Suzuki T
    FEBS Lett; 2005 Mar; 579(7):1688-92. PubMed ID: 15757662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stichopus japonicus arginine kinase: gene structure and unique substrate recognition system.
    Suzuki T; Yamamoto Y; Umekawa M
    Biochem J; 2000 Nov; 351 Pt 3(Pt 3):579-85. PubMed ID: 11042111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of Arg-96 in Danio rerio creatine kinase in substrate recognition and active center configuration.
    Uda K; Kuwasaki A; Shima K; Matsumoto T; Suzuki T
    Int J Biol Macromol; 2009 Jun; 44(5):413-8. PubMed ID: 19428475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphagen kinase in Schistosoma japonicum: II. Determination of amino acid residues essential for substrate catalysis using site-directed mutagenesis.
    Tokuhiro S; Nagataki M; Jarilla BR; Uda K; Suzuki T; Sugiura T; Agatsuma T
    Mol Biochem Parasitol; 2014; 194(1-2):56-63. PubMed ID: 24815317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional consequences of a gene duplication and fusion event in an arginine kinase.
    Compaan DM; Ellington WR
    J Exp Biol; 2003 May; 206(Pt 9):1545-56. PubMed ID: 12654893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arginine kinase evolved twice: evidence that echinoderm arginine kinase originated from creatine kinase.
    Suzuki T; Kamidochi M; Inoue N; Kawamichi H; Yazawa Y; Furukohri T; Ellington WR
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):671-5. PubMed ID: 10359650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that amino-acid residues are responsible for substrate synergism of locust arginine kinase.
    Wu QY; Li F; Wang XY
    Insect Biochem Mol Biol; 2008 Jan; 38(1):59-65. PubMed ID: 18070665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of N-terminal deletion mutation on arginine kinase from the sea cucumber Stichopus japonicus.
    Liu TT; Wang XC
    Int J Biol Macromol; 2008 Jan; 42(1):68-74. PubMed ID: 17996932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxocara canis: molecular cloning, characterization, expression and comparison of the kinetics of cDNA-derived arginine kinase.
    Wickramasinghe S; Uda K; Nagataki M; Yatawara L; Rajapakse RP; Watanabe Y; Suzuki T; Agatsuma T
    Exp Parasitol; 2007 Oct; 117(2):124-32. PubMed ID: 17574244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that the amino acid residue Ile121 is involved in arginine kinase activity and structural stability.
    Wu QY; Li F; Wang XY; Xu KL
    Int J Biol Macromol; 2012 Nov; 51(4):369-77. PubMed ID: 22643639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of intra-subunit interactions on the dimeric arginine kinase activity and structural stability.
    Wu QY; Jin KZ; Li F; Hu ZQ; Wang XY
    Int J Biol Macromol; 2011 Nov; 49(4):822-31. PubMed ID: 21839768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic acid dehalogenase: a kinetic, NMR, and mutational analysis.
    Azurmendi HF; Wang SC; Massiah MA; Poelarends GJ; Whitman CP; Mildvan AS
    Biochemistry; 2004 Apr; 43(14):4082-91. PubMed ID: 15065850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The interaction between residues 62 and 193 play a key role in activity and structural stability of arginine kinase.
    Liu N; Wang JS; Wang WD; Pan JC
    Int J Biol Macromol; 2011 Oct; 49(3):402-8. PubMed ID: 21645540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The active site cysteine of arginine kinase: structural and functional analysis of partially active mutants.
    Gattis JL; Ruben E; Fenley MO; Ellington WR; Chapman MS
    Biochemistry; 2004 Jul; 43(27):8680-9. PubMed ID: 15236576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.