BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 20434573)

  • 1. In-vivo time-dependent articular cartilage contact behavior of the tibiofemoral joint.
    Hosseini A; Van de Velde SK; Kozanek M; Gill TJ; Grodzinsky AJ; Rubash HE; Li G
    Osteoarthritis Cartilage; 2010 Jul; 18(7):909-16. PubMed ID: 20434573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo cartilage contact deformation in the healthy human tibiofemoral joint.
    Bingham JT; Papannagari R; Van de Velde SK; Gross C; Gill TJ; Felson DT; Rubash HE; Li G
    Rheumatology (Oxford); 2008 Nov; 47(11):1622-7. PubMed ID: 18775967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo tibiofemoral cartilage deformation during the stance phase of gait.
    Liu F; Kozanek M; Hosseini A; Van de Velde SK; Gill TJ; Rubash HE; Li G
    J Biomech; 2010 Mar; 43(4):658-65. PubMed ID: 19896131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo tibiofemoral cartilage-to-cartilage contact area of females with medial osteoarthritis under acute loading using MRI.
    Shin CS; Souza RB; Kumar D; Link TM; Wyman BT; Majumdar S
    J Magn Reson Imaging; 2011 Dec; 34(6):1405-13. PubMed ID: 21953771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topographic deformation patterns of knee cartilage after exercises with high knee flexion: an in vivo 3D MRI study using voxel-based analysis at 3T.
    Horng A; Raya JG; Stockinger M; Notohamiprodjo M; Pietschmann M; Hoehne-Hueckstaedt U; Glitsch U; Ellegast R; Hering KG; Glaser C
    Eur Radiol; 2015 Jun; 25(6):1731-41. PubMed ID: 25595640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of in-vivo articular cartilage contact surface of the knee during a step-up motion.
    Yin P; Li JS; Kernkamp WA; Tsai TY; Baek SH; Hosseini A; Lin L; Tang P; Li G
    Clin Biomech (Bristol, Avon); 2017 Nov; 49():101-106. PubMed ID: 28910722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of tibiofemoral cartilage deformation in the posterior cruciate ligament-deficient knee.
    Van de Velde SK; Bingham JT; Gill TJ; Li G
    J Bone Joint Surg Am; 2009 Jan; 91(1):167-75. PubMed ID: 19122092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Knee Cartilage Thickness, T1ρ and T2 Relaxation Time Are Related to Articular Cartilage Loading in Healthy Adults.
    Van Rossom S; Smith CR; Zevenbergen L; Thelen DG; Vanwanseele B; Van Assche D; Jonkers I
    PLoS One; 2017; 12(1):e0170002. PubMed ID: 28076431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo measurement of localized tibiofemoral cartilage strains in response to dynamic activity.
    Sutter EG; Widmyer MR; Utturkar GM; Spritzer CE; Garrett WE; DeFrate LE
    Am J Sports Med; 2015 Feb; 43(2):370-6. PubMed ID: 25504809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A finite element model of the human knee joint for the study of tibio-femoral contact.
    Donahue TL; Hull ML; Rashid MM; Jacobs CR
    J Biomech Eng; 2002 Jun; 124(3):273-80. PubMed ID: 12071261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How tibiofemoral alignment and contact locations affect predictions of medial and lateral tibiofemoral contact forces.
    Lerner ZF; DeMers MS; Delp SL; Browning RC
    J Biomech; 2015 Feb; 48(4):644-650. PubMed ID: 25595425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational investigation of the time-dependent contact behaviour of the human tibiofemoral joint under body weight.
    Meng Q; Jin Z; Wilcox R; Fisher J
    Proc Inst Mech Eng H; 2014 Nov; 228(11):1193-207. PubMed ID: 25500864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of normal gait on in vivo tibiofemoral cartilage strains.
    Lad NK; Liu B; Ganapathy PK; Utturkar GM; Sutter EG; Moorman CT; Garrett WE; Spritzer CE; DeFrate LE
    J Biomech; 2016 Sep; 49(13):2870-2876. PubMed ID: 27421206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of the influence of global functional loads vs. local contact anatomy on articular cartilage thickness at the knee.
    Koo S; Andriacchi TP
    J Biomech; 2007; 40(13):2961-6. PubMed ID: 17418219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of bone inhomogeneity on tibiofemoral contact mechanics during physiological loading.
    Venäläinen MS; Mononen ME; Väänänen SP; Jurvelin JS; Töyräs J; Virén T; Korhonen RK
    J Biomech; 2016 May; 49(7):1111-1120. PubMed ID: 26965471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo articular cartilage contact kinematics of the knee: an investigation using dual-orthogonal fluoroscopy and magnetic resonance image-based computer models.
    Li G; DeFrate LE; Park SE; Gill TJ; Rubash HE
    Am J Sports Med; 2005 Jan; 33(1):102-7. PubMed ID: 15611005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. American Society of Biomechanics Clinical Biomechanics Award 2013: tibiofemoral contact location changes associated with lateral heel wedging--a weight bearing MRI study.
    Barrance PJ; Gade V; Allen J; Cole JL
    Clin Biomech (Bristol, Avon); 2014 Nov; 29(9):997-1002. PubMed ID: 25280456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of real-time in-vivo cartilage contact deformation in the ankle joint.
    Li G; Wan L; Kozanek M
    J Biomech; 2008; 41(1):128-36. PubMed ID: 17697682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of in-vivo articular cartilage contact areas of human talocrural joint under weightbearing conditions.
    Wan L; de Asla RJ; Rubash HE; Li G
    Osteoarthritis Cartilage; 2006 Dec; 14(12):1294-301. PubMed ID: 16787752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo kinematics of the knee during weight bearing high flexion.
    Qi W; Hosseini A; Tsai TY; Li JS; Rubash HE; Li G
    J Biomech; 2013 May; 46(9):1576-82. PubMed ID: 23591448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.