These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 204347)
1. The influence of protein-lipid interactions on the order-disorder conformational transitions of the hydrocarbon chain. Mateu L; Caron F; Luzzati V; Billecocq A Biochim Biophys Acta; 1978 Mar; 508(1):109-21. PubMed ID: 204347 [TBL] [Abstract][Full Text] [Related]
2. Effect of basic protein from human central nervous system myelin on lipid bilayer structure. Boggs JM; Moscarello MA J Membr Biol; 1978 Feb; 39(1):75-96. PubMed ID: 204786 [TBL] [Abstract][Full Text] [Related]
3. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues. Benesch MG; Mannock DA; Lewis RN; McElhaney RN Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232 [TBL] [Abstract][Full Text] [Related]
4. Calorimetric, x-ray diffraction, and spectroscopic studies of the thermotropic phase behavior and organization of tetramyristoyl cardiolipin membranes. Lewis RN; Zweytick D; Pabst G; Lohner K; McElhaney RN Biophys J; 2007 May; 92(9):3166-77. PubMed ID: 17293402 [TBL] [Abstract][Full Text] [Related]
5. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylethanolamine bilayers: differential scanning calorimetric and Fourier transform infrared spectroscopic studies. Zhang YP; Lewis RN; Hodges RS; McElhaney RN Biophys J; 1995 Mar; 68(3):847-57. PubMed ID: 7756552 [TBL] [Abstract][Full Text] [Related]
6. Chemically induced lipid phase separation in model membranes containing charged lipids: a spin label study. Galla HJ; Sackmann E Biochim Biophys Acta; 1975 Sep; 401(3):509-29. PubMed ID: 241398 [TBL] [Abstract][Full Text] [Related]
7. Studies of the thermotropic phase behavior of phosphatidylcholines containing 2-alkyl substituted fatty acyl chains: a new class of phosphatidylcholines forming inverted nonlamellar phases. Lewis RN; McElhaney RN; Harper PE; Turner DC; Gruner SM Biophys J; 1994 Apr; 66(4):1088-103. PubMed ID: 8038381 [TBL] [Abstract][Full Text] [Related]
8. X-ray analysis of the kinetics of Escherichia coli lipid and membrane structural transitions. Ranck JL; Letellier L; Shechter E; Krop B; Pernot P; Tardieu A Biochemistry; 1984 Oct; 23(21):4955-61. PubMed ID: 6388638 [TBL] [Abstract][Full Text] [Related]
9. Kinetics of lamellar-to-cubic and intercubic phase transitions of pure and cytochrome c containing monoolein dispersions monitored by time-resolved small-angle X-ray diffraction. Kraineva J; Narayanan RA; Kondrashkina E; Thiyagarajan P; Winter R Langmuir; 2005 Apr; 21(8):3559-71. PubMed ID: 15807602 [TBL] [Abstract][Full Text] [Related]
11. A novel packing of the hydrocarbon chains in lipids. The low temperature phases of dipalmitoyl phosphatidyl-glycerol. Ranck JL; Keira T; Luzzati V Biochim Biophys Acta; 1977 Sep; 488(3):432-41. PubMed ID: 901797 [TBL] [Abstract][Full Text] [Related]
12. Formation of monolayers and bilayer foam films from lamellar, inverted hexagonal and cubic lipid phases. Jordanova A; Lalchev Z; Tenchov B Eur Biophys J; 2003 Feb; 31(8):626-32. PubMed ID: 12582822 [TBL] [Abstract][Full Text] [Related]
13. The thermotropic phase behaviour and phase structure of a homologous series of racemic beta-D-galactosyl dialkylglycerols studied by differential scanning calorimetry and X-ray diffraction. Mannock DA; Collins MD; Kreichbaum M; Harper PE; Gruner SM; McElhaney RN Chem Phys Lipids; 2007 Jul; 148(1):26-50. PubMed ID: 17524381 [TBL] [Abstract][Full Text] [Related]
15. Polymyxin binding to charged lipid membranes. An example of cooperative lipid-protein interaction. Hartmann W; Galla HJ; Sackmann E Biochim Biophys Acta; 1978 Jun; 510(1):124-39. PubMed ID: 208605 [TBL] [Abstract][Full Text] [Related]
16. Cooperative lipid-protein interaction. Effect of pH and ionic strength on polymyxin binding to phosphatidic acid membranes. Sixl F; Galla HJ Biochim Biophys Acta; 1979 Nov; 557(2):320-30. PubMed ID: 40598 [TBL] [Abstract][Full Text] [Related]
17. Studies of highly asymmetric mixed-chain diacyl phosphatidylcholines that form mixed-interdigitated gel phases: Fourier transform infrared and 2H NMR spectroscopic studies of hydrocarbon chain conformation and orientational order in the liquid-crystalline state. Lewis RN; McElhaney RN; Monck MA; Cullis PR Biophys J; 1994 Jul; 67(1):197-207. PubMed ID: 7918988 [TBL] [Abstract][Full Text] [Related]
18. Boundary lipids and protein mobility in rhodopsin-phosphatidylcholine vesicles. Effect of lipid phase transitions. Davoust J; Bienvenue A; Fellmann P; Devaux PF Biochim Biophys Acta; 1980 Feb; 596(1):28-42. PubMed ID: 6243483 [TBL] [Abstract][Full Text] [Related]
19. Temperature-induced conformational changes in human tearlipids hydrocarbon chains. Borchman D; Foulks GN; Yappert MC; Ho DV Biopolymers; 2007 Oct 5-15; 87(2-3):124-33. PubMed ID: 17600814 [TBL] [Abstract][Full Text] [Related]
20. 31P NMR studies of unsonicated aqueous dispersions of neutral and acidic phospholipids. Effects of phase transitions, p2H and divalent cations on the motion in the phosphate region of the polar headgroup. Cullis PR; De Kruyff B Biochim Biophys Acta; 1976 Jul; 436(3):523-40. PubMed ID: 952909 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]