These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 20435006)

  • 21. Neuroscience. Adaptive coding.
    Ridderinkhof KR; van den Wildenberg WP
    Science; 2005 Feb; 307(5712):1059-60. PubMed ID: 15718459
    [No Abstract]   [Full Text] [Related]  

  • 22. Evidence for cortical automaticity in rule-based categorization.
    Helie S; Roeder JL; Ashby FG
    J Neurosci; 2010 Oct; 30(42):14225-34. PubMed ID: 20962243
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Compositionality of rule representations in human prefrontal cortex.
    Reverberi C; Görgen K; Haynes JD
    Cereb Cortex; 2012 Jun; 22(6):1237-46. PubMed ID: 21817092
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neural circuits of hierarchical visuo-spatial sequence processing.
    Bahlmann J; Schubotz RI; Mueller JL; Koester D; Friederici AD
    Brain Res; 2009 Nov; 1298():161-70. PubMed ID: 19686704
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A neural network elicited by parametric manipulation of the attention load.
    Mazoyer P; Wicker B; Fonlupt P
    Neuroreport; 2002 Dec; 13(17):2331-4. PubMed ID: 12488821
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Abrupt transitions between prefrontal neural ensemble states accompany behavioral transitions during rule learning.
    Durstewitz D; Vittoz NM; Floresco SB; Seamans JK
    Neuron; 2010 May; 66(3):438-48. PubMed ID: 20471356
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Separable neural mechanisms contribute to feedback processing in a rule-learning task.
    Zanolie K; Van Leijenhorst L; Rombouts SA; Crone EA
    Neuropsychologia; 2008 Jan; 46(1):117-26. PubMed ID: 17900633
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bending the rules: strategic behavioral differences are reflected in the brain.
    Wolfensteller U; von Cramon DY
    J Cogn Neurosci; 2010 Feb; 22(2):278-91. PubMed ID: 19400682
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Rostro-Caudal Axis of Frontal Cortex Is Sensitive to the Domain of Stimulus Information.
    Bahlmann J; Blumenfeld RS; D'Esposito M
    Cereb Cortex; 2015 Jul; 25(7):1815-26. PubMed ID: 24451658
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neural Interactions Underlying Visuomotor Associations in the Human Brain.
    Madhavan R; Bansal AK; Madsen JR; Golby AJ; Tierney TS; Eskandar EN; Anderson WS; Kreiman G
    Cereb Cortex; 2019 Dec; 29(11):4551-4567. PubMed ID: 30590542
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Timing and magnitude of frontal activity differentiates refixation and anti-saccade performance.
    Clementz BA; McDowell JE; Stewart SE
    Neuroreport; 2001 Jul; 12(9):1863-8. PubMed ID: 11435913
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hierarchical cognitive control deficits following damage to the human frontal lobe.
    Badre D; Hoffman J; Cooney JW; D'Esposito M
    Nat Neurosci; 2009 Apr; 12(4):515-22. PubMed ID: 19252496
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of motivation on control hierarchy in the human frontal cortex.
    Bahlmann J; Aarts E; D'Esposito M
    J Neurosci; 2015 Feb; 35(7):3207-17. PubMed ID: 25698755
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conversation effects on neural mechanisms underlying reaction time to visual events while viewing a driving scene: fMRI analysis and asynchrony model.
    Hsieh L; Young RA; Bowyer SM; Moran JE; Genik RJ; Green CC; Chiang YR; Yu YJ; Liao CC; Seaman S
    Brain Res; 2009 Jan; 1251():162-75. PubMed ID: 18952070
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Network mechanisms of intentional learning.
    Hampshire A; Hellyer PJ; Parkin B; Hiebert N; MacDonald P; Owen AM; Leech R; Rowe J
    Neuroimage; 2016 Feb; 127():123-134. PubMed ID: 26658925
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Learned predictions of error likelihood in the anterior cingulate cortex.
    Brown JW; Braver TS
    Science; 2005 Feb; 307(5712):1118-21. PubMed ID: 15718473
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrating when and what information in the left parietal lobe allows language rule generalization.
    Orpella J; Ripollés P; Ruzzoli M; Amengual JL; Callejas A; Martinez-Alvarez A; Soto-Faraco S; de Diego-Balaguer R
    PLoS Biol; 2020 Nov; 18(11):e3000895. PubMed ID: 33137084
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Longitudinal development of frontoparietal activity during feedback learning: Contributions of age, performance, working memory and cortical thickness.
    Peters S; Van Duijvenvoorde AC; Koolschijn PC; Crone EA
    Dev Cogn Neurosci; 2016 Jun; 19():211-22. PubMed ID: 27104668
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reward-dependent learning in neuronal networks for planning and decision making.
    Dehaene S; Changeux JP
    Prog Brain Res; 2000; 126():217-29. PubMed ID: 11105649
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic Trial-by-Trial Recoding of Task-Set Representations in the Frontoparietal Cortex Mediates Behavioral Flexibility.
    Qiao L; Zhang L; Chen A; Egner T
    J Neurosci; 2017 Nov; 37(45):11037-11050. PubMed ID: 28972126
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.