BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 20435342)

  • 1. Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation.
    Ma X; Geisler-Lee J; Deng Y; Kolmakov A
    Sci Total Environ; 2010 Jul; 408(16):3053-61. PubMed ID: 20435342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Release, transport and toxicity of engineered nanoparticles.
    Soni D; Naoghare PK; Saravanadevi S; Pandey RA
    Rev Environ Contam Toxicol; 2015; 234():1-47. PubMed ID: 25385512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabricated nanoparticles: current status and potential phytotoxic threats.
    Yadav T; Mungray AA; Mungray AK
    Rev Environ Contam Toxicol; 2014; 230():83-110. PubMed ID: 24609519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered nanoparticles in plant growth: Phytotoxicity concerns and the strategies for their attenuation.
    Mathur P; Chakraborty R; Aftab T; Roy S
    Plant Physiol Biochem; 2023 Jun; 199():107721. PubMed ID: 37156069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi.
    Navarro E; Baun A; Behra R; Hartmann NB; Filser J; Miao AJ; Quigg A; Santschi PH; Sigg L
    Ecotoxicology; 2008 Jul; 17(5):372-86. PubMed ID: 18461442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of water composition on association of Ag and CeO₂ nanoparticles with aquatic macrophyte Elodea canadensis.
    Van Koetsem F; Xiao Y; Luo Z; Du Laing G
    Environ Sci Pollut Res Int; 2016 Mar; 23(6):5277-87. PubMed ID: 26564182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of metal-based engineered nanoparticles with aquatic higher plants: A review of the state of current knowledge.
    Thwala M; Klaine SJ; Musee N
    Environ Toxicol Chem; 2016 Jul; 35(7):1677-94. PubMed ID: 26757140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can the properties of engineered nanoparticles be indicative of their functions and effects in plants?
    Liu Y; Pan B; Li H; Lang D; Zhao Q; Zhang D; Wu M; Steinberg CEW; Xing B
    Ecotoxicol Environ Saf; 2020 Dec; 205():111128. PubMed ID: 32827963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attenuation mechanisms of arsenic induced toxicity and its accumulation in plants by engineered nanoparticles: A review.
    Ulhassan Z; Bhat JA; Zhou W; Senan AM; Alam P; Ahmad P
    Environ Pollut; 2022 Jun; 302():119038. PubMed ID: 35196561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vulnerability of drinking water supplies to engineered nanoparticles.
    Troester M; Brauch HJ; Hofmann T
    Water Res; 2016 Jun; 96():255-79. PubMed ID: 27060529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental exposure assessment of engineered nanoparticles: why REACH needs adjustment.
    Meesters JA; Veltman K; Hendriks AJ; van de Meent D
    Integr Environ Assess Manag; 2013 Jul; 9(3):e15-26. PubMed ID: 23633247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lead uptake, toxicity, and detoxification in plants.
    Pourrut B; Shahid M; Dumat C; Winterton P; Pinelli E
    Rev Environ Contam Toxicol; 2011; 213():113-36. PubMed ID: 21541849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicity, Uptake, and Translocation of Engineered Nanomaterials in Vascular plants.
    Miralles P; Church TL; Harris AT
    Environ Sci Technol; 2012 Sep; 46(17):9224-39. PubMed ID: 22892035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insight interactions of engineered nanoparticles with aquatic higher plants for phytoaccumulation, phytotoxicity, and phytoremediation applications: A review.
    Sukul U; Das K; Chen JS; Sharma RK; Dey G; Banerjee P; Taharia M; Lee CI; Maity JP; Lin PY; Chen CY
    Aquat Toxicol; 2023 Nov; 264():106713. PubMed ID: 37866164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The oxidative toxicity of Ag and ZnO nanoparticles towards the aquatic plant Spirodela punctuta and the role of testing media parameters.
    Thwala M; Musee N; Sikhwivhilu L; Wepener V
    Environ Sci Process Impacts; 2013 Oct; 15(10):1830-43. PubMed ID: 23917884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxic effects of engineered nanoparticles in the marine environment: model organisms and molecular approaches.
    Matranga V; Corsi I
    Mar Environ Res; 2012 May; 76():32-40. PubMed ID: 22391237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of nanoparticle tracking analysis for characterising the fate of engineered nanoparticles in sediment-water systems.
    Luo P; Roca A; Tiede K; Privett K; Jiang J; Pinkstone J; Ma G; Veinot J; Boxall A
    J Environ Sci (China); 2018 Feb; 64():62-71. PubMed ID: 29478662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoremediation of engineered nanoparticles using aquatic plants: Mechanisms and practical feasibility.
    Ebrahimbabaie P; Meeinkuirt W; Pichtel J
    J Environ Sci (China); 2020 Jul; 93():151-163. PubMed ID: 32446451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: A review.
    Abbas Q; Yousaf B; Amina ; Ali MU; Munir MAM; El-Naggar A; Rinklebe J; Naushad M
    Environ Int; 2020 May; 138():105646. PubMed ID: 32179325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytotoxicity of nanoparticles--problems with bioassay choosing and sample preparation.
    Jośko I; Oleszczuk P
    Environ Sci Pollut Res Int; 2014 Sep; 21(17):10215-24. PubMed ID: 24756677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.